Simulink® Real-Time™
User's Guide

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ User's Guide
© COPYRIGHT 1999-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 1999
November 2000
June 2001
September 2001
July 2002

June 2004
August 2004
October 2004
November 2004
March 2005
September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1 (Release 11.1)
Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14SP2)
Revised for Version 2.8 (Release 14SP3)
Revised for Version 2.9 (Release 2006a)
Revised for Version 3.0 (Release 2006a+)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 4.0 (Release 2008b)
Revised for Version 4.1 (Release 2009a)
Revised for Version 4.2 (Release 2009b)
Revised for Version 4.3 (Release 2010a)
Revised for Version 4.4 (Release 2010b)
Revised for Version 5.0 (Release 2011a)
Revised for Version 5.1 (Release 2011b)
Revised for Version 5.2 (Release 2012a)
Revised for Version 5.3 (Release 2012b)
Revised for Version 5.4 (Release 2013a)
Revised for Version 5.5 (Release 2013b)
Revised for Version 6.0 (Release 2014a)
Revised for Version 6.1 (Release 2014b)
Revised for Version 6.2 (Release 2015a)
Revised for Version 6.3 (Release 2015b)
Revised for Version 6.4 (Release 2016a)
Revised for Version 6.5 (Release 2016b)
Revised for Version 6.6 (Release 2017a)
Revised for Version 6.7 (Release 2017b)
Revised for Version 6.8 (Release 2018a)
Revised for Version 6.9 (Release 2018b)
Revised for Version 6.10 (Release 2019a)
Revised for Version 6.11 (Release 2019b)
Revised for Version 6.12 (Release 2020a)
Revised for Version 7.0 (Release 2020b)

Contents

Introduction
Simulink Real-Time Product Description 1-2
Speedgoat Target Computers and I/O Hardware 1-3
Model Architectures
FPGA Models

2|

Speedgoat FPGA Support with HDL Workflow Advisor 2-2
Speedgoat Simulink-Programmable 1/0 Module Support 2-2
Prepare for FPGAWorkflow 2-2

Interrupt Configuration 2-4

Functional Mockup Units and Simulink Real-Time

3|

Apply Functional Mockup Units by Using Simulink Real-Time 3-2

Compile Source Code for Functional Mockup Units
Configure Compiler Environment Variables
Createthe FMUFile e
Implement the FMU BlockinModel

Third-Party Calibration Support

4

Calibrate Real-Time Application 4-2

Prepare ASAP2 Data Description File
Initial Setup

vi

Set Up Parameters i 4-7

SetUpSignals 4-7
SetUpLookup Tables 4-8
Generate Data Description File 4-9
Calibrate Parameters with Vector CANape 4-10
Prepare Project 4-10
Prepare Devicet 4-10
Configure Signals and Parametersc..... 4-10
Measure Signals and Calibrate Parameters 4-11
Vector CANape Limitations 4-12
Troubleshoot Vector CANape Operation 4-13
What This Issue Meanscc0 v iiiiineennn... 4-13
Try This Workaround 4-13
Calibrate Parameters with ETASInca 4-14
Prepare Database 4-14
Prepare Project 4-14
Prepare Workspace i 4-14
Prepare Experiment 4-14
Configure Signals and Parameters 4-15
Measure Signals and Calibrate Parameters 4-15
ETAS Inca Limitations 4-16
Troubleshoot ETAS Inca Operation 4-17
What This Issue Meansc.ououiiinnnnnnnnnnn.. 4-17
Try This Workaround 4-17

Real-Time Application Setup

Contents

Real-Time Application Environment

S|

Select Default Target Computer 5-2
Set Up Target Computer Ethernet Connection 5-3
Target Computer Update, Reboot, and Startup Application 5-5

Signals and Parameters

6|

Signal Monitoring Basics 6-2

Monitor Signals by Using Simulink Real-Time Explorer 6-3

Instrument a Stateflow Subsystem 6-4
Animate Stateflow Charts with Simulink External Mode 6-6
Signal Tracing Basics 6-7

Export and Import Signals in Instrument by Using Simulink Real-

Time Explorer e 6-8
Trace Signals by Using Simulink External Mode 6-10
Data Logging with Simulation Data Inspector (SDI) 6-13
Parameter Tuning and Data Logging 6-18
Trace or Log Data with the Simulation Data Inspector 6-22
External Mode Usage i, 6-26
Signal Logging Basics 6-27
Tune Parameters by Using Simulink Real-Time Explorer 6-28

Set Up the Simulation Data Inspector 6-28
View Initial Parameter Values 6-29
Modify Parameter Values 6-29
Tune Parameters by Using MATLAB Language 6-31
Tune Parameters by Using Simulink External Mode 6-33
Tune Parameters by Using Batch Mode and Update All 6-33
Tunable Block Parameters and Tunable Global Parameters 6-35
Tunable Parameters 6-35
Inlined Parameters 6-35
Tune Global Parameters by Using External Mode 6-36
Tune Global Parameters by Using Simulink Real-Time Explorer . . . 6-36
Tune Global Parameters by Using MATLAB Language 6-36
Tune Inlined Parameters by Using Simulink Real-Time Explorer . . 6-38
Configure Model to Tune Inlined Parameters 6-38
Initial Value 6-39
Updated Value 6-41
Tune Inlined Parameters by Using MATLAB Language 6-42
Tune Parameter Structures by Using Simulink Real-Time Explorer
... 6-43
Create Parameter Structure 6-43
Replace Block Parameters with Parameter Structure Fields 6-44
Save and Load Parameter Structure 6-44
Tune Parameters in a Parameter Structure 6-45

viii

Tune Parameter Structures by Using MATLAB Language 6-46

Create Parameter Structure 6-46
Save and Load Parameter Structure 6-47
Replace Block Parameters with Parameter Structure Fields 6-47
Tune Parameters in a Parameter Structure 6-47
Define and Update InportData 6-49
Required Files 6-49
Map Inport to Use Square Wave 6-49
Update Inport to Use Sawtooth Wave 6-51
Define and Update Inport Data by Using MATLAB Language 6-54
Required Files e 6-54
Map Inport to Use Square Wavecvuiun... 6-54
Update Inport to Use SawtoothWave 6-55
Inport Data Mapping Limitations 6-56
Display and Filter Hierarchical Signals and Parameters 6-57
Hierarchical Displayc.iiiii ... 6-57
Filtered Displayt e 6-58
Sorted Displayo 6-59
Troubleshoot Signals Not Accessible by Name 6-61
What This Issue Meanscc0iiiiiiennnn... 6-61
Try This Workaround i, 6-61
Troubleshoot Parameters Not Accessible by Name 6-62
What This Issue Meansc.ouuiiinnnnnnnnnnnnn.. 6-62
Try This Workaround 6-62
Internationalization Issues, 6-63

7

Execution Modes e 7-2
Real-Time Application Execution

Working with the Target Computer Command Line

8|

Control Real-Time Application at Target Computer Command Line

Contents

Execute Target Computer RTOS Commands at Target Computer
CommandLine 8-3

9

CPUOverload 9-2
Monitor CPUOverload Rate 9-3
Execution Profiling for Real-Time Applications 9-8
Reduce Build Time for Simulink Real-Time Referenced Models ... 9-12

Execution with MATLAB Scripts

Real-Time Application Objects and Options in the MATLAB

Interface

Target and Application Objects 10-2
Control Real-Time Application by Using Objects 10-2

Use Real-Time Application Object Functions 10-3

Simulink Real-Time Instrument Object

11|

Instrumentation Apps for Real-Time Applications 11-2

Automated Test with Simulink Test

12

Test Real-Time Application 12-2

ix

X

Examples

Contents

Simulink Real-Time Examples

13

Parameter Tuning and Data Logging 13-2
Concurrent Execution on Simulink® Real-Time™ 13-6
Add App Designer App to Inverted Pendulum Model 13-13
Connect Triggered Subsystem by Using Thread Trigger 13-17
EtherCAT® Communication with Beckhoff® Analog IO Slave Devices

EL3062 and EL4002 13-18
EtherCAT® Communication with Beckhoff® Digital IO Slave Devices

EL1004 and EL2004 13-23
EtherCAT® Communication - Motor Velocity Control with Accelnet™

Drive e 13-28
EtherCAT® Communication - Motor Position Control with an

Accelnet™ Drive 13-33
Generate ENI Files for EtherCAT® Devices 13-38

EtherCAT® Communication - Detect EtherCAT network failure and

TeSel 13-47
EtherCAT® Communication - Sequenced Writing Slave SoE
Configuration Variables 13-52
EtherCAT® Communication - Sequenced Writing Slave CoE
Configuration Variables 13-57
Simple ASCII Encoding/Decoding Loopback Test (With Baseboard
Blocks) 13-62
ASCII Encoding/Decoding Loopback Test 13-63
ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)
.. 13-64
ASCII Encoding/Decoding Resync Loopback Test 13-66
ASCII Encoding/Decoding Resync Loopback Test (With Baseboard
BlocksS) 13-67
Binary Encoding/Decoding Loopback Test 13-69

Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)

.. 13-70
Binary Encoding/Decoding Resync Loopback Test 13-72
Binary Encoding/Decoding Resync Loopback Test (With Baseboard

Blocks) 13-73
Target to Development Computer Communication by Using TCP

.. 13-75
Target to Host Transmission by Using UDP 13-78
Apply Simulink Real-Time Model Template to Create Real-Time

Application 13-82

Troubleshooting

Troubleshooting Basics

14

Troubleshooting Basics 14-2

Link Between Development and Target Computers

15|

Troubleshoot Communication Failure Through Firewall 15-2

What This Issue Meansiiinnnnnnnn... 15-2

Try This Workaround, 15-2
Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point,

and Multidimensional Signals 15-4

What This Issue Meanscc0iiiiiiienennn... 15-4

Try This Workaroundo, 15-4

Troubleshoot Signal Data Logging from Send and Receive Blocks

... 15-6

What This Issue Means, 15-6

Try This Workaround, 15-6

xi

xii

Model Compilation

16|

Troubleshoot Model Links to Shared Libraries 16-2
What ThisIssue Meansu .. 16-2
Try This Workaround 16-2
Troubleshoot Build Error for Accelerator Mode 16-3
What ThisIssue Meansiinn.. 16-3
Try This Workaround i, 16-3

Real-Time Application Performance

17

Troubleshoot Unsatisfactory Real-Time Performance 17-2

What This Issue Meansuiiiiinnnnnnn... 17-2

Try This Workaround, 17-2
Troubleshoot Overloaded CPU from Executing Real-Time Application

... 17-4

What This Issue Meansc.c0uiiiiinennnn... 17-4

Try This Workaround 17-4

Troubleshoot Gaps in Streamed Data 17-6

What This Issue Means, 17-6

Try This Workaround 17-6

18

Find Simulink Real-Time Support 18-2

Install Simulink Real-Time Software Updates 18-3

Contents

Introduction

1

Introduction

Simulink Real-Time Product Description

1-2

Build, run, and test real-time applications

Simulink Real-Time lets you create real-time applications from Simulink models and run them on
Speedgoat target computer hardware connected to your physical system. It is designed for real-time
simulation and testing tasks, including rapid control prototyping (RCP), DSP and vision system
prototyping, and hardware-in-the-loop (HIL) simulation.

With Simulink Real-Time you can extend your Simulink models with Speedgoat I/O driver blocks and
automatically build real-time applications. Tests can be automated or run interactively on a
Speedgoat target computer equipped with a real-time kernel, multicore CPUs, 1/O and protocol
interfaces, and FPGAs.

Simulink Real-Time and Speedgoat target computer hardware are designed to work together to
create real-time systems for desktop, lab, and field environments. The software and hardware
solution supports the latest versions of MATLAB® and Simulink.

Speedgoat Target Computers and 1/0 Hardware

Speedgoat Target Computers and I/0 Hardware

Speedgoat target computers are real-time computers fitted with a set of I/O hardware, Simulink
programmable FPGAs, and communication protocol support. Speedgoat target computers are
optimized for use with Simulink Real-Time and fully support the HDL Coder™ workflow.

Connect a development computer to a Speedgoat target computer that meets your requirements:
form factor, performance, I/O interface, and protocol interface. Speedgoat target computer systems
come with:

+ I/O and protocol interfaces, an Intel® CPU, and optional FPGA hardware, configured and ready to
use

* 1/O cables, terminal boards, Simulink driver blocks, documentation, and a loopback wiring harness
that facilitates acceptance testing for each I/O module

* The Simulink Real-Time kernel preinstalled on the target computer

Hardware-In-the-Loop (HIL) Simulators and Rugged Units for Controls (RCP), DSP, and
Vision Prototyping

speedgoat

(h_\wwf 7 — W‘ﬁ‘(;!‘

1-3

Model Architectures

FPGA Models

* “Speedgoat FPGA Support with HDL Workflow Advisor” on page 2-2
» “Interrupt Configuration” on page 2-4

2 FPGA Models

Speedgoat FPGA Support with HDL Workflow Advisor

2-2

Use Simulink Real-Time and HDL Coder to implement Simulink algorithms and configure I/O
functionality on Speedgoat Simulink-Programmable I/O modules. For an example that shows the
development workflow for FPGA I/O modules, see “FPGA Programming and Configuration on
Speedgoat Simulink-Programmable 1/0 Modules” (HDL Coder).

When you open the HDL Workflow Advisor in HDL Coder and run the Simulink Real-Time FPGA
I/0 workflow, you generate a Simulink Real-Time interface subsystem. The subsystem mask controls
the block parameters. Do not edit the parameters directly. The FPGA I/O board block descriptions are
for informational purposes only.

Speedgoat Simulink-Programmable 1/0 Module Support

Speedgoat Simulink-Programmable I/O modules are part of Speedgoat target computer systems. To
run the Simulink Real-Time FPGA I/0 workflow, install the Speedgoat Library and the
Speedgoat HDL Coder Integration Packages. You can then choose the Target platform and run the
workflow to generate a Simulink Real-Time interface subsystem. To see the documentation for the
integration packages, enter this command at the MATLAB command prompt.

speedgoat.hdlc.doc

To learn about See links

The integration packages and how you can install |See Speedgoat - HDL Coder Integration

them. Packages.

Speedgoat I/O modules that are supported with |See Speedgoat Real-Time FPGA Application
the HDL Workflow Advisor. Support from HDL Coder.

Applications and use cases See Common Use Cases and Applications.
Supported interfaces for various types of I/O See Supported Interfaces.

connectivity and protocols as well as fundamental
functionality such as PCle read/write and DMA.

Provided examples for all supported I/O modules |See Speedgoat I/O Examples.
and functionality

Prepare for FPGA Workflow

To work with FPGAs in the Simulink Real-Time environment, install:

« HDL Coder and Simulink Real-Time.

+ Xilinx® design tools with specific tool and version listed in “HDL Language Support and Supported
Third-Party Tools and Hardware” (HDL Coder). You must also set up the path to the tool by using
the hdlsetuptoolpath function.

* Speedgoat Library and the Speedgoat HDL Coder Integration Packages.
* Speedgoat FPGA I/O module in the Speedgoat target machine.

You can use the workflow in HDL Coder to generate HDL code for your FPGA target device.

https://www.speedgoat.com/help/hdlcoder/page/index
https://www.speedgoat.com/help/hdlcoder/page/index
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.speedgoat.com/help/hdlcoder/page/refentry_usecases
https://www.speedgoat.com/help/hdlcoder/page/refentry_interfaces
https://www.speedgoat.com/help/hdlcoder/page/refentry_example

Speedgoat FPGA Support with HDL Workflow Advisor

See Also

Related Examples

. “FPGA Programming and Configuration on Speedgoat Simulink-Programmable I/O Modules”
(HDL Coder)

More About

. “HDL Language Support and Supported Third-Party Tools and Hardware” (HDL Coder)
. “Tool Setup” (HDL Coder)

External Websites

. www.speedgoat.com

2-3

https://www.speedgoat.com

2 FPGA Models

Interrupt Configuration

2-4

Simulink Real-Time software schedules the real-time application by using either the internal timer of
the Speedgoat target machine (default) or an interrupt from an I/O board. You can use your
Speedgoat FPGA board to generate an interrupt. You can:

* Schedule execution of the real-time application based on this interrupt (synchronous execution).
For this method, you must generate the interrupt periodically.

* Execute a designated subsystem in your real-time application (asynchronous execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and Simulink Real-Time domain
models. For more information, see “Speedgoat Target Computers and I/O Hardware” on page 1-3.

See Also

Functional Mockup Units and Simulink
Real-Time

* “Apply Functional Mockup Units by Using Simulink Real-Time” on page 3-2
* “Compile Source Code for Functional Mockup Units” on page 3-3

3 Functional Mockup Units and Simulink Real-Time

Apply Functional Mockup Units by Using Simulink Real-Time

3-2

After you create a model that contains an FMU block, you can build and download the model to a
target computer by using Simulink Real-Time. These limitations apply:

* Simulink Real-Time supports FMU blocks for Co-Simulation mode. Simulink Real-Time does not
support FMU blocks for Model Exchange mode.

* Simulink Real-Time does not support FMU blocks within a referenced model. FMU blocks must be
at the top level of the model.

* Simulink Real-Time generates a mask dialog box that contains both numeric-valued and string-
valued parameters. Simulink Real-Time generates code for only numeric- valued parameters.

To convert a Simulink model that contains FMU blocks to a Simulink Real-Time model, set the model
configuration parameters to values compatible with real-time execution:

* Inthe Code Generation pane, set System target file to slrealtime.tlc.

* In the Solver pane:

* Set Type to Fixed-step.
* Set Fixed-step size to a step size compatible with the real-time requirements of your model.

* Generate a shared object SO file by using the QNX® Neutrino® tools for the FMU. For more
information, see “Create the FMU File” on page 3-3.

You can then build and download the model to a target computer and run the real-time application.
This process loads the required FMU binary files on the target computer. For more information about
creating the FMU files, see “Compile Source Code for Functional Mockup Units” on page 3-3.

Note Note: Simulink Real-Time supports FMU blocks that comply with FMU v1.0. Blocks complying
with FMU v2.0 are not supported.

To open an example model that contains FMU blocks running in Simulink Real-Time, in the MATLAB
Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt ex vanderpol'))

See Also
FMU

More About
. “Import FMUs”

External Websites
. https://fmi-standard.org/

https://fmi-standard.org/

Compile Source Code for Functional Mockup Units

Compile Source Code for Functional Mockup Units

When you build a model that includes FMU blocks, you must compile the FMU source code by using
the QNX Neutrino compiler qcc or g++. This compiler creates shared object SO files that you include
in the FMU. This process makes sure that the FMU contains the code to run on a Simulink Real-Time
target computer. For more information, see “Apply Functional Mockup Units by Using Simulink Real-
Time” on page 3-2.

Configure Compiler Environment Variables

The support package for the target computer includes the QNX Neutrino C/C++ compiler qcc or g+
+. Before using the compiler to generate the FMU file, configure the compiler environment variables.

1 Open a Windows cmd window and change folders to the root folder for the Simulink Real-Time
Target Support Package. If you have changed the default folder for MATLAB support packages,
adjust this command to match your custom location. At the Windows command prompt, type:

C:
cd C:\ProgramData\MATLAB\SupportPackages\<release>\toolbox\slrealtime\target\supportpackage\c

2 To set the Windows environment variables that are required to use the QNX Neutrino compiler
from the command line, run the batch file gnxsdp-env.bat. At the Windows command prompt,

type:

gnxsdp-env.bat
3 Ensure that the gcc compiler is ready to use. At the Windows prompt, type:

which qcc
The command returns:

C:/ProgramData/MATLAB/SupportPackages/<release>/toolbox/slrealtime/target/supportpackage/qnx7

Create the FMU File

The FMU file contains a hierarchy of files and folders. A set of these is provided in this example. The
example shows how to create the shared object file for a single source file that is linked in the real-
time application that runs on the target computer.

To view the files for this example, in the MATLAB Command Window, type:

cd(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex fmu work'))

To open the model for this example, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
"examples', 'slrt_ex vanderpol'))

1 The example FMU file vanDerPol slrt. fmu contains this set of folders:

C:\work\my_ fmu_ work\

C:\work\my fmu work\binaries\
C:\work\my fmu work\binaries\slrt x64
C:\work\my fmu work\binaries\win64
C:\work\my fmu work\documentation

3-3

3 Functional Mockup Units and Simulink Real-Time

3-4

C:\work\my fmu work\resources
C:\work\my fmu work\sources\

2 The example has FMU source files in the sources folder. This example uses files:
fmuTemplate.c, fmuTemplate.h, vanDerPol.c

3 The example has a dynamically linked library file from the source files that was created by using
a Window-based compiler. This file is in the win64 folder. This example uses file:
vanDerPol.dll

4 To compile the sources in the example by using qcc, copy the files for the FMU from folder
matlab/slrealtime/examples/slrt _ex fmu work to folder C:\work\my fmu work.

5 In a Windows cmd window, change the current folder to be the location of your source files. At
the Windows command prompt, type:

cd C:\work\my fmu work\sources
6 To generate the QNX Neutrino shared object SO file, the example compiles the sources by using
the -Vgcc _ntox86 64 flag. At the Windows command prompt, type:

gcc -Vgcc _ntox86 64 -shared -o ../binaries/slrt x64/vanDerPol.so -fPIC -DFMI_COSIMULATION

Note The QNX Neutrino compiler does not support Windows long file names (for example, paths
with space characters) for the library search switch - I. To work around this limitation, you can
install MATLAB in a path without spaces (for example, C: \MATLAB) or you can use the DOS 8.3
path in the compiler command. To get the 8.3 folder names, you can use the dir /x command in
a Windows cmd window.

7 To generate the functional mockup unit FMU file that contains the QNX Neutrino shared object
file, the example archives the folders and files. Use the FMU extension for the archive file. At the
Windows command prompt, type:

cd ..
zip -r vanDerPol.fmu *

Implement the FMU Block in Model

To implement the vanDerPol block in the Simulink model by using the FMU, specify the FMU name
for the block. Open the model slrt_ex vanderpol, double-click the FMU block vanDerPol, and
select the vanDerPol. fmu file for the FMU name block parameter.

Build the model, load the real-time application on the target computer, and run the real-time
application.

See Also
FMU

More About
. “Import FMUs”

External Websites
* https://fmi-standard.org/

- I

https://fmi-standard.org/

Third-Party Calibration Support

* “Calibrate Real-Time Application” on page 4-2

* “Prepare ASAP2 Data Description File” on page 4-3

» “Calibrate Parameters with Vector CANape” on page 4-10
* “Vector CANape Limitations” on page 4-12

* “Troubleshoot Vector CANape Operation” on page 4-13

* “Calibrate Parameters with ETAS Inca” on page 4-14

+ “ETAS Inca Limitations” on page 4-16

* “Troubleshoot ETAS Inca Operation” on page 4-17

4 Third-Party Calibration Support

Calibrate Real-Time Application

4-2

Simulink Real-Time supports interaction with third-party calibration tools such as Vector CANape
(www.vector.com) and ETAS Inca (www.etas.com). Use these tools for:

» Parameter display and tuning

* Calibration data saving, restoring, and swapping by page

* Signal value streaming

These tools run in XCP master mode. Simulink Real-Time emulates an electronic control unit (ECU)
operating in XCP slave mode. To enable a real-time application to work with the third-party software:

* Configure the third-party software to communicate with the real-time application as an ECU.

* Provide a standard TCP/IP physical layer between the development and target computers.
Simulink Real-Time supports third-party calibration software only through TCP/IP.

* Generate a real-time application with signal and parameter attributes that are consistent with A2L
(ASAP2) file generation. See “Export ASAP2 File for Data Measurement and Calibration”.

* Use the build process to generate model.a2l (ASAP2) files that the software can load into its
database. The generated file contains signal and parameter access information for the real-time
application and XCP-related sections and memory addresses.

If your model includes referenced models, the build creates a model. a21 file for the real-time
application and separate refmodel. a2l files for each referenced model.

Note You cannot configure third-party software for calibration with only the A2L files that Simulink
Coder™ generates. These files do not contain XCP-related sections and memory addresses. Simulink
Real-Time adds this information during the build process.

See Also

More About

. “Export ASAP2 File for Data Measurement and Calibration”
. “Prepare ASAP2 Data Description File” on page 4-3

. “Calibrate Parameters with Vector CANape” on page 4-10

. “Calibrate Parameters with ETAS Inca” on page 4-14

. “XCP Master Mode”

External Websites
. www.vector.com
. Www.etas.com

https://www.vector.com
https://www.etas.com
https://www.vector.com
https://www.etas.com

Prepare ASAP2 Data Description File

Prepare ASAP2 Data Description File

This example shows how to configure a Simulink Real-Time model so that the build generates an
ASAP2 (A2L) data description file for the real-time application. The real-time application models a
damped oscillator that feeds into 1-D and 2-D lookup tables, which invert and rescale the input
waveform.

This example uses model slrt_ex osc_cal. To open the model, in the MATLAB Command Window,

type:
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt ex osc cal'))

1-D T(u)

> N(En
Gain £L_1D

K Scope1

Gain 1-D Lookup

Table
nooo
i 1s ?
Integrator
Signal Integrator Integrator1
Generator £ DampedOsc
2-D T(u)
>
) Lo)
Gain1 »
) N
» Scope2
-£ SignalGenerator " P
Scope 2-D Lookup
Table

Model sirt_ex_osc_cal
Simulink Real-Time example model

Copyright 1999-2020 The MathWorks, Inc.

4 Third-Party Calibration Support

4| Scope - O X

File Tools View Simulation Help o

@-a4® P =R IO RN T R

Ready Sample based Offzet=0 T=1.000

Prepare ASAP2 Data Description File

4 Scopel — O >

File Tools View Simulation Help o

@-a4® P =R IO SR R 7

Ready Sample based Offzet=0 T=1.000

4 Third-Party Calibration Support

4-6

4 Scopel — O >
File Tools View Simulation Help o

- 4O ®| - AQ- B FH-

Ready Sample based T=1.000

Calibration of parameters reduces the ringing in signals DampedOsc, L_1D, and L 2D.

Initial Setup

Open the model and check for model data.

1 Openslrt ex osc cal

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime', ...
'examples', 'slrt ex osc cal'))

The Model Workspace variables contain these functions:

* Kg — Parameter object for the Gainl block
* DampedOsc, SignalGenerator, L 1D, L 2D — Signal objects for output signals
* LUT 1D obj, LUT 2D obj — 1-D and 2-D lookup tables data respectively
* SignalGenerator — Test input data
2 Set the Default parameter behavior configuration parameter to Tunable.

Prepare ASAP2 Data Description File

3 In the Code Mappings Editor (Embedded Coder) in Data Defaults, specify the storage class as
PageSwitching for Model parameters under Parameters.

Maodel sid_ex_pac_cal
Sirulnk Real-Time example model

Copyright 19589-2020 The MathWarks, Inc.

2] J

Code Mappings - C (7 T

Data Defaults Parameters Data Stores Signals/States

Filter contents |

Inports and Qutports
Signals
' Parameters
[;H Model parameters ‘Auto” will be tunable PageSwitching

[;‘.’é.] External parameter objects ‘Auto” will be tunable Default

Note The model default setting for parameters sets the storage class as PageSwitching.

Set Up Parameters

Set up parameter tuning by using Simulink parameter objects.

1 . . . =]
Inslrt_ex osc_cal, on the Modeling tab, click Design > Model Explorer .

Select Model Workspace in the Model Hierarchy pane.
Make sure that the Kg parameter object exists and has these properties:

* Value — 400
* Data type — double
4 If the parameter object does not exist, add it. On the toolbar, click the Add Simulink Parameter
button[.].
5 Openslrt ex osc cal/Gainl.
Make sure that you have set the Gain value to the parameter object Kg.

Set Up Signals

As a best practice, set up signal viewing by using Simulink signal objects.

Inslrt_ex osc_cal, on the Modeling tab, click Design > Model Explorer .

4 Third-Party Calibration Support

4-8

Select Model Workspace in the Model Hierarchy pane.
Make sure that the DampedOsc signal object exists and has these properties:

* Minimum — -10

* Maximum — 10

* Data type — double

Make sure that the SignalGenerator signal object exists and has these properties:

* Minimum — -10

* Maximum — 10

* Data type — double

Make sure that the L 1D signal object exists and has these properties:

* Minimum — -15

* Maximum — 15

* Data type — double

Make sure that the L 2D signal object exists and has these properties:

¢ Minimum — -15
¢ Maximum — 15
* Data type — double

If a signal does not exist, add it. On the toolbar, click the Add Simulink Signal button ||
For each signal, open its Properties dialog box.

Make sure that you selected the Signal name must resolve to Simulink signal object and the
Test point check boxes.

Set Up Lookup Tables

The example model contains 1-D and 2-D lookup tables.

1
2

Open the block parameters for the 1-D Lookup Table block.
In the Table and Breakpoints pane, verify these settings:

* Number of table dimensions — 1

* Data specification — Lookup table object

* Name — LUT 1D obj

Open the block parameters for the 2-D Lookup Table block.
In the Table and Breakpoints pane, check these settings:

* Number of table dimensions — 2
* Data specification — Lookup table object
* Name — LUT 2D obj

To view the contents of the lookup tables, click Edit table and breakpoints, and then click Plot >
Mesh.

Prepare ASAP2 Data Description File

Generate Data Description File
1 On the REAL-TIME tab, select RUN ON TARGET > Build Application. The build produces a
file named slrt ex osc cal slrt.mldatx in the working folder containing A2L file.

2 Toretrieve the A2L file and update target IP address in the A2L file, use extractASAP2
command.

3 Connect to the target by using a third-party calibration tool.

See Also
n-D Lookup Table

More About

. “Calibrate Parameters with Vector CANape” on page 4-10
. “Calibrate Parameters with ETAS Inca” on page 4-14

External Websites

. www.vector.com

. Www.etas.com

4-9

https://www.vector.com
https://www.etas.com

4 Third-Party Calibration Support

Calibrate Parameters with Vector CANape

4-10

This example shows how to view signals and tune parameters by using Vector CANape. You must
have already completed the steps in “Prepare ASAP2 Data Description File” on page 4-3.

You also must be familiar with the Vector CANape user interface. For information about the user
interface, see the vendor documentation (www.vector.com).

Prepare Project

Build and download the real-time application slrt _ex osc_cal.

Start the real-time application by selecting REAL-TIME > RUN ON TARGET > Start
Application.

Disconnect the connection from MATLAB:

tg = slrealtime
disconnect(tg)

You can now connect to third-party calibration tools.
Open Vector CANape.
Create a Vector CANape project with project name slrt_ex osc_cal.

Accept the default folder.

Prepare Device

1

From the extracted slrt_ex osc cal.a2l, create an XCP device named
slrt _ex osc cal slrt.

Do not configure dataset management.

Select your local computer Ethernet adapter as the Ethernet channel.
Accept the remaining defaults.

Upload data from the device.

Configure Signals and Parameters

Open device slrt_ex osc_cal slrt, and then open slrt ex osc cal.a2l.
Add signals DampedOsc, SignalGenerator, L 1D, and L 2D in separate display windows.
To make the waveform easier to evaluate, set the time and y-axis scaling.

For example, try the following settings for DampedOsc:

* y-axis min home value — —25

* y-axis max home value — 25

* Min home time-axis value — 0 s

* Max home time-axis value — 0.1s
* Time duration — 0.1s

https://www.vector.com

Calibrate Parameters with Vector CANape

4 Open the measurement list.
To set the required sample time for a signal, open the measurement properties for the signal.
Select the required sample time from the measurement mode list.
The default sample time is the base sample time.

6 Add a graphic control on parameter Kg.

Measure Signals and Calibrate Parameters

1 Start the Vector CANape measurement.
2 To shorten the ring time on DampedOsc, L 1D, and L 2D, set parameter Kg to 800.
3 Asrequired, toggle between calibration RAM active and inactive.

When using the Run on Target button on the Simulink Editor Real-Time tab to run the simulation,
there is a time lag of a couple of seconds between the start of the real-time application on the target
computer and the connect model operation on the development computer. If you are examining
signals at or very close to application start, consider using the step-by-step approach to connect
model and then using an SSH connection (for example, using PuTTY) start the real-time application.
For more information, see “Execute Real-Time Application in Simulink External Mode by Using Step-
by-Step Commands” and “Execute Target Computer RTOS Commands at Target Computer Command
Line” on page 8-3.

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “Vector CANape Limitations” on page 4-12
. “Troubleshoot Vector CANape Operation” on page 4-13

External Websites

. www.vector.com

4-11

https://www.vector.com

4 Third-Party Calibration Support

Vector CANape Limitations

For Vector CANape, the Simulink Real-Time software does not support:

4-12

Starting and stopping the real-time application by using Vector CANape commands.
To start and stop the real-time application on the target computer, use the Simulink Real-Time
start and stop commands, for example start(tg), stop(tg).

Vector CANape flash programming.
Multiple simultaneous Vector CANape connections to a single target computer.

Event mode data acquisition has the following limitations:

Every piece of data that the Simulink Real-Time software adds to the event list slows the real-time
application. The amount of data that you can observe depends on the model sample time and the
speed of the target computer. It is possible to overload the target computer CPU to where data
integrity is reduced.

You can trace only signals and scalar parameters. You cannot trace vector parameters.

Troubleshoot Vector CANape Operation

Troubleshoot Vector CANape Operation

My third-party calibration tool (Vector CANape) is not working with the real-time application.

What This Issue Means

You can use the Vector CANape tool to view signals and tune parameters in the real-time application.
For more information, see the steps in “Prepare ASAP2 Data Description File” on page 4-3. In
addition to the limitations listed in “Vector CANape Limitations” on page 4-12, there are various
issues that can prevent the operation of this tool.

Try This Workaround
For Vector CANape tool issues, try these workarounds.
Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS Inca) are
mutually exclusive. If you use the Simulation Data Inspector to view signal data, you cannot use the
calibration tools. If you use the calibration tools, you cannot use the Simulation Data Inspector to
view signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it to the address
stored in the ASAP?2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the calibration
tool with the new version of the file. The ASAP?2 file is valid only until the next time that you build the
application.

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “Vector CANape Limitations” on page 4-12

External Websites
. MathWorks Help Center website
. www.vector.com

4-13

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.vector.com

4 Third-Party Calibration Support

Calibrate Parameters with ETAS Inca

4-14

This example shows how to view signals and tune parameters by using ETAS Inca. You must have
already completed the steps in “Prepare ASAP2 Data Description File” on page 4-3.

You also must be familiar with the ETAS Inca user interface. For information about the user interface,
see the vendor documentation (www.etas.com).

Prepare Database

1
2

Build and download real-time application slrt _ex osc cal.

Start the real-time application by selecting REAL-TIME > RUN ON TARGET > Start
Application.

Disconnect the connection from MATLAB:

tg = slrealtime

disconnect(tg)

You can then connect to third-party calibration tools.

Open ETAS Inca.

Add an ETAS Inca database by using the folder named SLRTDatabase.
Add subfolders named Experiment, Project, and Workspace.

Prepare Project

Under folder Project, add an ECU project.

When prompted, select A2L file slrt_ex osc_cal.a2l, which is extracted from the project file.
Ignore the prompt for a HEX file.

If you change and rebuild the real-time application, delete the ECU project and recreate it with
the new A2L file.

Prepare Workspace

gua A W N =

Under folder Workspace, add workspace slrt _ex osc cal wksp.

Add project slrt _ex osc cal slrt toworkspace slrt ex osc cal wksp.
When prompted, add an Ethernet system XCP device to the workspace.

Configure the XCP device and initialize it. Autoconfigure the ETAS network.

To upload data from the device hardware, use enhanced operations on memory pages.

Data is uploaded from the real-time application on the target computer.

Prepare Experiment

1
2

Under folder Experiment, add experiment slrt _ex osc cal exp.
Add experiment slrt_ex osc cal exp to workspace slrt ex osc cal wksp.

https://www.etas.com

Calibrate Parameters with ETAS Inca

Configure Signals and Parameters

Start experiment slrt ex osc cal exp.

2 To create graphic controls for the variables, add variables Kg, DampedOsc, SignalGenerator,
L 1D, and L_2D.

3 Add YT oscilloscopes for DampedOsc, SignalGenerator, L 1D, and L 2D.

For each signal, set the sample time to the base sample time of the real-time application (250
ps).

Measure Signals and Calibrate Parameters

1 Start the ETAS Inca measurement.

2 To shorten the ring time on DampedOsc, L 1D, and L 2D, set parameter Kg to 800.

3 Asrequired, toggle between the reference page and the working page.

When using the Run on Target button on the Simulink Editor Real-Time tab to run the simulation,
there is a time lag of a couple of seconds between the start of the real-time application on the target
computer and the connect model operation on the development computer. If you are examining
signals at or very close to application start, consider using the step-by-step approach to connect
model and then using an SSH connection (for example, using PuTTY) start the real-time application.
For more information, see “Execute Real-Time Application in Simulink External Mode by Using Step-

by-Step Commands” and “Execute Target Computer RTOS Commands at Target Computer Command
Line” on page 8-3.

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “ETAS Inca Limitations” on page 4-16
. “Troubleshoot ETAS Inca Operation” on page 4-17

External Websites

. Www.etas.com

4-15

https://www.etas.com

4 Third-Party Calibration Support

ETAS Inca Limitations

For ETAS Inca, the Simulink Real-Time software does not support:

4-16

Starting and stopping the real-time application by using ETAS Inca commands.

To start and stop the real-time application on the target computer, use the Simulink Real-Time
start and stop commands, for example, start(tg), stop(tg).

ETAS Inca flash programming.
Multiple simultaneous ETAS Inca connections to a single target computer.

Tunability of parameters with ExportedGlobal storage class when the model has other
parameters with PageSwitching storage class. As a work around you can:

* Place all the parameters you want to tune in model workspace. Or

* Change the default mapping for storage class from PageSwitching to default. The
PageSwitching storage class is not used, and the page switching functionality is not
available.

Event mode data acquisition has the following limitations:

Every piece of data that the Simulink Real-Time software adds to the event list slows the real-time
application. The amount of data that you can observe depends on the model sample time and the
speed of the target computer. It is possible to overload the target computer CPU to where data
integrity is reduced.

You can trace only signals and scalar parameters. You cannot trace vector parameters.

Troubleshoot ETAS Inca Operation

Troubleshoot ETAS Inca Operation

Investigate issues that can occur when ETAS Inca controls a real-time application.

My third-party calibration tool (ETAS Inca) is not working with the real-time application.

What This Issue Means

You can use the ETAS Inca tool to view signals and tune parameters in the real-time application. For
more information, see the steps in “Prepare ASAP2 Data Description File” on page 4-3. In addition to
the limitations listed in “ETAS Inca Limitations” on page 4-16, there are various issues that can
prevent the operation of this tool.

Try This Workaround

For ETAS Inca tool issues, try these workarounds.

Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS Inca) are
mutually exclusive. If you use the Simulation Data Inspector to view signal data, you cannot use the
calibration tools. If you use the calibration tools, you cannot use the Simulation Data Inspector to
view signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it to the address
stored in the ASAP?2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the calibration
tool with the new version of the file. The ASAP?2 file is valid only until the next time that you build the
application.

Cannot Disable Freeze Mode

Remove the dataset file from the target file system and reset the parameters to the original values
specified in your model. The dataset file is named flashdata model name.dat.

Transport Layer Failure

When a transport layer failure occurs, ETAS Inca can display this message:
ERROR: Transport Layer Failure, Inconsistent MsgCounter
This error appears in ETAS Inca when the incorrect setting is used for 'Counter Consistency

Mode'. Make sure that the 'Counter Consistency Mode' issetto 'one counter for all
CTOs+DTOs"' in the hardware settings for your experiment.

4-17

4 Third-Party Calibration Support

4-18

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “ETAS Inca Limitations” on page 4-16
. “Troubleshoot ETAS Inca Operation” on page 4-17

External Websites
. MathWorks Help Center website

. Www.etas.com

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.etas.com

Real-Time Application Setup

19

Real-Time Application Environment

* “Select Default Target Computer” on page 5-2
» “Set Up Target Computer Ethernet Connection” on page 5-3
* “Target Computer Update, Reboot, and Startup Application” on page 5-5

5 RealTime Application Environment

Select Default Target Computer

5-2

When you start Simulink Real-Time Explorer for the first time, it opens a default target computer
node, TargetPC1l. You can configure this node for a target computer, then connect the node to the
target computer.

You can add other target computer nodes and designate one of them as the default target computer.
To set a target computer node as the default:

1 Select a nondefault target computer node from the Targets Tree panel in Simulink Real-Time
Explorer.
2 In the Target Configuration tab, select the Default checkbox.

If you delete a default target computer node, the target computer node preceding it becomes the
default target computer node. The last target computer node becomes the default target computer
node and you cannot delete it.

To use the Simulink Real-Time command-line interface to work with the target computer, you must
indicate the target computer with which the command is interacting. If you do not identify a
particular target computer, the Simulink Real-Time software uses the default target computer.

The Targets object manages collective and individual target computer environments. For more
information, see “Set Up Target Computer Ethernet Connection” on page 5-3.

When you call the Targets object getTargetSettings function without arguments, the
constructor gets the real-time environment settings for the default target computer.

my tgs = slrealtime.Targets();
my tgs settings = getTargetSettings(my tgs);

When you call the Target object slrealtime function without arguments, the constructor uses the
link properties of the default target computer to communicate with the target computer.

tg = slrealtime;

See Also
Simulink Real-Time Explorer | Target | Targets | getDefaultTargetName |
setDefaultTargetName | slrealtime

Set Up Target Computer Ethernet Connection

Set Up Target Computer Ethernet Connection

To install PCI bus Ethernet protocol interface hardware in your Speedgoat target computer, see the
Speedgoat website at www.speedgoat.com.

Development Target
computer computer
network :l network
card card

—

Ethernet link

To configure the target computer Ethernet hardware:

1 If the target computer already contains one or more Ethernet cards, to get a list of these
Ethernet cards, see your Speedgoat target machine documentation.

2 Assign a static IP address to the target computer Ethernet card by using Simulink Real-Time
Explorer.

Unlike the target computer, the development computer network adapter card can have a dynamic
host configuration protocol (DHCP) address and can be accessed from the network. Configure
the DHCP server to reserve static IP addresses to prevent these addresses from being assigned
to other systems.

3 Connect your target computer Ethernet card to your LAN by using an unshielded twisted-pair
(UTP) cable.

You can directly connect your computers by using a crossover UTP cable with RJ45 connectors.
Both computers must have static IP addresses. If the development computer has a second
network adapter card, that card can have a DHCP address.

To build and download a real-time application by using the installed Ethernet card, first specify the
environment properties for the development and target computers.

Before you start, ask your system administrator for the following information for your target
computer:

o [P address
* Subnet mask address

This procedure sets up Ethernet protocol for the default target computer TargetPC1:

1 Open Simulink Real-Time Explorer.

2 In the Targets Tree panel, select target computer TargetPC1 and then click the Change IP
Address button.

3 Configure the New IP Address and New Netmask fields in the Configure Target Computer IP
Address dialog box. Click OK.

5-3

https://www.speedgoat.com

5 RealTime Application Environment

4 Click the Disconnected label, toggling it to Connected.

You can also configure the target computer Ethernet protocol by using MATLAB commands. For more
information, see the Targets object functions and examples.

Target Computer Update, Reboot, and Startup Application

Target Computer Update, Reboot, and Startup Application

With Simulink Real-Time Explorer, you can update the target computer RTOS software, reboot the
target computer, and configure a startup application that runs each time you start the target
computer.

To update the target computer software:

1
2
3
4

Open Simulink Real-Time Explorer.

In the Targets Tree panel, select target computer TargetPC1.

To update the target computer RTOS software, click the Update Software button.
Click the Disconnected label, toggling it to Connected.

To reboot the target computer:

1
2
3
4

Open Simulink Real-Time Explorer.

In the Targets Tree panel, select target computer TargetPC1.
To reboot the target computer, click the Reboot button.

Click the Disconnected label, toggling it to Connected.

To configure a startup real-time application:

1
2
3
4

Open Simulink Real-Time Explorer.

In the Targets Tree panel, select target computer TargetPC1.

To load a real-time application on the target computer, click the Load Application button.
After you load the application, select the application from the Applications on target
computer list and select the Startup App check.box. The next time the target computer starts
or reboots, the application runs on startup.

See Also
reboot | setStartupApp | update

3-5

Signals and Parameters

Important prototyping tasks include:

* Changing parameters in your real-time application while it is running
* Viewing the resulting signal data
* Checking the results

The Simulink Real-Time software includes command-line and graphical user interfaces to complete
these tasks.

» “Signal Monitoring Basics” on page 6-2

* “Monitor Signals by Using Simulink Real-Time Explorer” on page 6-3

* “Instrument a Stateflow Subsystem” on page 6-4

* “Animate Stateflow Charts with Simulink External Mode” on page 6-6

» “Signal Tracing Basics” on page 6-7

+ “Export and Import Signals in Instrument by Using Simulink Real-Time Explorer” on page 6-8
* “Trace Signals by Using Simulink External Mode” on page 6-10

* “Data Logging with Simulation Data Inspector (SDI)” on page 6-13

* “Parameter Tuning and Data Logging” on page 6-18

* “Trace or Log Data with the Simulation Data Inspector” on page 6-22

+ “External Mode Usage” on page 6-26

+ “Signal Logging Basics” on page 6-27

* “Tune Parameters by Using Simulink Real-Time Explorer” on page 6-28

* “Tune Parameters by Using MATLAB Language” on page 6-31

* “Tune Parameters by Using Simulink External Mode” on page 6-33

* “Tunable Block Parameters and Tunable Global Parameters” on page 6-35

* “Tune Inlined Parameters by Using Simulink Real-Time Explorer” on page 6-38

¢ “Tune Inlined Parameters by Using MATLAB Language” on page 6-42

* “Tune Parameter Structures by Using Simulink Real-Time Explorer” on page 6-43
* “Tune Parameter Structures by Using MATLAB Language” on page 6-46

* “Define and Update Inport Data” on page 6-49

* “Define and Update Inport Data by Using MATLAB Language” on page 6-54

* “Inport Data Mapping Limitations” on page 6-56

* “Display and Filter Hierarchical Signals and Parameters” on page 6-57

* “Troubleshoot Signals Not Accessible by Name” on page 6-61

* “Troubleshoot Parameters Not Accessible by Name” on page 6-62

* “Internationalization Issues” on page 6-63

6 Signals and Parameters

Signal Monitoring Basics

6-2

Signal monitoring acquires real-time signal data without time information during real-time
application execution. There is a minimal additional load on the real-time tasks.

You can monitor signals by using:

* Simulink Real-Time Explorer and the Simulation Data Inspector
* MATLAB language and the Instrument object
* Simulink external mode and a Scope block

See Also
Instrument | Scope

More About
. “Display and Filter Hierarchical Signals and Parameters” on page 6-57
. “View Data in the Simulation Data Inspector”

. “Troubleshoot Signals Not Accessible by Name” on page 6-61

Monitor Signals by Using Simulink Real-Time Explorer

Monitor Signals by Using Simulink Real-Time Explorer

This procedure uses the model slrt_ex osc. You must have already completed this setup:

1

2
3
4

Open model slrt_ex osc. Set property Stop time to inf. On the Simulink Editor Real-Time
tab, select Run on Target > Stop Time and set the Stop Time to inf.

Connect to the target computer. Toggle the Disconnected indicator to Connected.

Build and download the real-time application to the target computer. Click Run on Target.
Open Simulink Real-Time Explorer. Click Prepare > SLRT Explorer.

To monitor a signal in the real-time application:

1 In Simulink Real-Time Explorer, click Load Application. Select the slrt ex osc application
from the Applications on target computer list and click Load.

2 Click the Parameters tab.

3 -
Select the signals to monitor from the list, and then click Add to signals in instrument N

4 To start the real-time application, click Start.

5 To view the signals in the Simulation Data Inspector, click Data Inspector.

6 To stop execution, click Stop.

See Also

More About

“Export and Import Signals in Instrument by Using Simulink Real-Time Explorer” on page 6-8
“Display and Filter Hierarchical Signals and Parameters” on page 6-57
“Troubleshoot Signals Not Accessible by Name” on page 6-61

6-3

6 Signals and Parameters

Instrument a Stateflow Subsystem

6-4

A Simulink Real-Time model that uses Stateflow blocks can provide visual confirmation that your

chart behaves as expected.

This procedure uses the model slrt _ex sf car. To open the model, in the MATLAB Command

Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex sf car'))

To make Stateflow states available in the Simulation Data Inspector, select them and mark them for

Log Self Activity:

1 Openthe slrt ex sf car model
2 Double-click the shift logic chart.

" . Stateflow (chart) slrt_ex_sf_car/shift_legic * - Simulink prerelease use

SIMULATION DEBUG MODELING FORMAT REAL-TIME STATE

o Exclusive (OR)
3 Mappings o) ¥ 3 | (@ %
i Parallel (AND! -

Group Subchart Atomic FrTizT iomee Comment Add o S ch.S_eIf Te_st Data

Selection Selection Subchart QOut Breakpoint | Execution Orde i Activity Point Inspector
COMPONENT DEBUG DECOMPOSITION MONITOR ACTIVITY RESULTS Y

i.,'—l I transmission ratio ¢ shift_logic X sirt_ex_sf car

® |[Pajsirt_ex_sf car b T3 shift_logic -

i'gear_slate

: UrP UpP - UP

! @ first 1 [third _] _
| entry: gear = 1;) 2 entry: gear=3; |

]

: e DOWN DOWN

1

__

[speed = down_th]

g

o

[speed > down_th]

P ReHESE @D 0B S

after(TWAIT tick) after(TWAIT tick)
[speed <= down_th] [speed >= up_th]
{gear_state DOWN} {gear_state UP}
125% odes

3 Inthe gear_state chart, select the first state
4 Click the Log Self Activity button and the Test Point button.

Instrument a Stateflow Subsystem

5 Repeat steps 3-4 for gear_state values second, third, and fourth.

6 Build and download the real-time application to the target computer. On the Real-Time tab, click
Run on Target.

7 Monitor Stateflow states by using the Simulation Data Inspector. For more information, see
“View Data in the Simulation Data Inspector” and “View State Activity by Using the Simulation
Data Inspector” (Stateflow).

See Also

More About

. “View Data in the Simulation Data Inspector”

. “View State Activity by Using the Simulation Data Inspector” (Stateflow)
. “Animate Stateflow Charts with Simulink External Mode” on page 6-6

6 Signals and Parameters

Animate Stateflow Charts with Simulink External Mode

6-6

The Simulink Real-Time software supports the animation of Stateflow charts in your model to provide
visual confirmation that your chart behaves as expected.

You must be familiar with the use of Stateflow animation. For more information on Stateflow
animation, see “Animate Stateflow Charts” (Stateflow).

You must have already configure the Stateflow states for animation in the model. If you have not, see
“Animate Stateflow Charts” (Stateflow). This example uses model slrt _ex sf car. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex sf car'))

1 1 Open the external mode control panel. In the Simulink Editor, in the Real-Time tab, click
Prepare > Control Panel.

2 Select Signal & Triggering.

3 Inthe Trigger section of the External Signal & Triggering window:

a To direct the trigger to re-arm after the trigger event completes, set Mode to normal.
b To select the number of base rate steps for which external mode uploads data after a trigger
event, in the Duration box, enter 5.
¢ To direct data upload to begin immediately after the trigger event, select the Arm when
connecting to target check box.
4 Click Apply. For more information about signal and triggering options, see “Configure Host
Monitoring of Target Application Signal Data”.
5 Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.
6 Build and download the model to the target computer. On the Real-Time tab, click Run on
Target.
7 The simulation begins to run. You can observe the animation by opening the Stateflow Editor for
your model.
8 To stop the simulation, on the Real-Time tab, click Stop.

See Also

More About

. “Animate Stateflow Charts” (Stateflow)

. “Configure Host Monitoring of Target Application Signal Data”
. “Simulink External Mode Interface”

Signal Tracing Basics

Signal Tracing Basics

Signal tracing acquires signal and time data from a real-time application. While the real-time
application is running, you can visualize the data on the target computer by using the Simulation
Data Inspector. You can upload the data from a File Log block to the development computer and
display it using the Simulation Data Inspector.

You trace signals by marking the signals for logging or connecting the signals to File Log blocks. View
the signals by using Simulink Real-Time Explorer, Simulink external mode, and the Simulation Data
Inspector.

See Also

More About

. “Display and Filter Hierarchical Signals and Parameters” on page 6-57
. “View Data in the Simulation Data Inspector”

. “Troubleshoot Signals Not Accessible by Name” on page 6-61

6 Signals and Parameters

Export and Import Signals in Instrument by Using Simulink
Real-Time Explorer

6-8

When testing a complex model with many signals, you frequently must select signals for tracing or
monitoring from multiple parts and levels of the model hierarchy. You can make this task easier by
using Simulink Real-Time Explorer to select the signals in instrument and save the list of signals to
disk.

This procedure uses the model slrt_ex osc. You must have already completed this setup:

1 Openmodel slrt _ex osc.

2 Connect to the target computer. On the Simulink Editor Real-Time tab, toggle the
Disconnected indicator to Connected.

3 Build and download the real-time application to the target computer. Click Run on Target.

4 Open Simulink Real-Time Explorer. Click Prepare > SLRT Explorer.

To add signals to the signals in instrument, export the list of signals, and import the list of signals:

1 In Simulink Real-Time Explorer, click Load Application. Select the slrt ex osc application
from the Applications on target computer list and click Load.

2 Click the Parameters tab.

3 -
Select the signals to monitor from the list and then click Add to signals in instrument

To export the list, click Export instrument to file ™= | Name the files and click Save.

5 To remove signals from the signals in the instrument, select the signals in the list, and then click

Remove signals from instrument

To import the list, click Import instrument from file = |, Select the file and click Open.

When developing an App Designer application or an m-script that connects to a real-time application,
it is helpful to have MATLAB code for the signals in the instrument. This code provides access to
signals in an Instrument object (or instrumented signals), which are signals that are configured for
streaming signal data from a real-time application.

To generate this code from the Signals in Instrument:

1 In Simulink Real-Time Explorer, click Load Application. Select the slrt ex osc application
from the Applications on target computer list and click Load.
2 Click the Signals tab.

Select the signals to monitor from the list, and then click Add to signals in instrument
4 To create MATLAB code for the signals in the instrument, click Generate MATLAB code to
create Instrument programmatically —
the code for the signals in the Instrument.

. An editor window opens in MATLAB and displays

See Also
Instrument | addSignal | connectLine | connectScalar | validate

Export and Import Signals in Instrument by Using Simulink Real-Time Explorer

More About

. “Monitor Signals by Using Simulink Real-Time Explorer” on page 6-3
. “Display and Filter Hierarchical Signals and Parameters” on page 6-57

6-9

6 Signals and Parameters

Trace Signals by Using Simulink External Mode

6-10

You can use Simulink external mode to establish a communication channel between your Simulink
block diagram and your real-time application. The block diagram becomes a user interface to your
real-time application. Simulink scopes can display signal data from the real-time application,
including from models referenced inside a top model. You can control which signals to upload through
the External Signal & Triggering dialog box. See “Select Signals to Upload” and “TCP/IP or Serial
External Mode Control Panel”.

Note Do not use Simulink external mode while Simulink Real-Time Explorer is running. Use only one
interface to control the real-time application.

This procedure uses model slrt ex osc. This model contains a Simulink Scope block.
To set up triggering for the external mode simulation:

1 Openmodel slrt_ex osc.

2 Open the external mode control panel. In the Simulink Editor, on the Real-Time tab, click
Prepare > Control Panel.

In the external mode control panel, click Signal & Triggering.

In the External Signal & Triggering dialog box, set the Source parameter to manual.

Set the Mode parameter to normal. In this mode, the scope acquires data continuously.
Select the Arm when connecting to target check box.

In the Delay box, enter 0.

In the Duration box, enter the number of samples for which external mode is to log data, for
example, 1000. The External Signal & Triggering dialog box looks like this figure.

coNOUB AW

Trace Signals by Using Simulink External Mode

xpeosc: External Signal & Triggering

Signal selection
Trigger Selected Block Path Select all
X Scope x¥pcosc/Scope
Clear all
o
off
Trigger Signal
Go To Block
Trigger options
Source: Kmanual - | Mode: normal ~ | Duration: | 1000 | Delay: |[}
Arm when connecting to target
Trigger signal
Path: Port: |1 Element: any
Direction: rising Level: O Hold-off: 0

Cancel Help Apply

9 Click Apply, and then Close. In the External Mode Control Panel dialog box, click OK.

To set the stop time and run the simulation:

1 In the Simulink toolbar, increase the simulation stop time to, for example, 50.

2 Save the model as ex_slrt_ext osc. On the Simulation tab, from Save, click Save As.

3 Ifascope window is not displayed for the Scope block, double-click the Scope block.

4 Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to

Connected.

5 Build and download the real-time application to the target computer. Click Run on Target.

The real-time application begins running on the target computer. The Scope window displays

plotted data.

6-11

6 Signals and Parameters

4. Scope - O X

File Tools View Simulation Help o

-8 | =-a-E- £ & -

Ready Sample based |Offzet=0.8 |T=10.000

6 To stop the simulation, on the Real-Time tab click Stop.

See Also

6-12

Data Logging with Simulation Data Inspector (SDI)

Data Logging with Simulation Data Inspector (SDI)

This example shows how to use a Simulink® Real-Time™ log of signal data and the Simulation Data
Inspector. Signals are logged during model execution. At the end of the run, the Simulation Data
Inspector interface displays the signal. This example show how to get the signals from the Simulation
Data Inspectore interface by using the command line.

Open, Build, and Download the Model

Open the model slrt_ex soc_dist. This model calibrates the control efforts through social
distancing on an infectious disease outbreak.

Open the model.

mdl = 'slrt ex soc dist';
md1l0pen = 0;
systems = find system('type', 'block diagram');
if all(~strcmp(mdl, systems))
mdlOpen = 1;
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex soc dist.slx'));
end

6-13

6 Signals and Parameters

LA
-

h

Im dimiR

susceptbls

exposad

o KT
zinfecpows & minor symptoms
= < p LT »3
pf 25| wla dlaR o+ z-1 | recovefed
z-{infgctious § asymbgmatic
b
b Lb 5
|
diplm v
dipls ;_ _ eclipus & Pre-symptofnatc v 4SE — 1 KTs
— s z-1
| Im
»(H
dEla
= | y
" K Ts
dElp > - R
It - z-1
K Ts
B! P
| z1 | fataities E.
dHD ™y
—{H - -
dHR |-
b
.) I disH |-
infectious & sere symptpnks
ol K15 L
z1
K Ts hospitalized
z-1

6-14

Model slrt_ex_soc_dist
Simulink Real-Time example model

Caopyright 2020 The MathWorks, Inc.

Build the model and download to the target computer:

* Configure for a non-Verbose build.
* Build and download application.

set _param(mdl, 'RTWVerbose', 'off"');
rtwbuild(mdl);

Successful completion of build procedure for: slrt ex soc dist
Created MLDATX ..\slrt ex soc dist.mldatx

Build Summary

Data Logging with Simulation Data Inspector (SDI)

Top model targets built:

Model Action Rebuild Reason

slrt _ex soc dist Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: Oh 1m 3.422s

* Close the model it is open.

if (mdl0pen)
bdclose(mdl);
end

Run the Model to Evaluate Effects of No Social Distancing During the Outbreak

Using the Simulink Real-Time object variable, tg, load and start the model, and modify model
parameters.

tg = slrealtime;

tg.load(mdl);

tg.setparam(’

tg.setparam(’

tg.start;

while ~strcmp(tg.status, 'stopped')
pause(5);

','soc_dist level',1);
', 'thresh _int level',1);

end
tg.stop;

Run the Model to evaluate the effect of social distancing during the outbreak.

Using the Simulink Real-Time object variable, tg, load and start the model, and modify model
parameters

tg = slrealtime;

tg.load(mdl);

tg.setparam('

tg.setparam('

tg.start;

while ~strcmp(tg.status, 'stopped')
pause(5);

','soc dist level',0.2);
','thresh _int level',0.2);

end
tg.stop;

Display the signals in the Simulation Data Inspector

To view the plotted signal data, open the Simulation Data Inspector.

Simulink.sdi.view

Retrieve and plot signal data from the Simulation Data Inspector

You can also retrieve the signal data from the SDI and plot the data by using these commands.

* Get all the runs

* Get the run information

6-15

6 Signals and Parameters

* Get the signal.
* Get the signal objects.

Take only infectious group values.
* Plot the signals.

The result shows that social distancing can reduce the number of hospitalized people

runIds = Simulink.sdi.getAllRunIDs();

for i = 1l:length(runlds)
run = Simulink.sdi.getRun(runIds(i));
signalID = run.getSignalIDsByName('hospitalized');
if ~isempty(signallD)
signalObj = Simulink.sdi.getSignal(signallD);
signalArray(:,1i) = signalObj.Values(:,1).Data;
timeValues = 100*(signalObj.Values(:,1).Time);
plot(timeValues,signalArray);
drawnow;
end
end

grid on;
xlabel('Time in days'); ylabel('hospitalized people');

18000 T

16000

14000

12000

10000

8000 [\

hospitalized people

=2}
]
)
=]
T

4000 b ! '

2000 / \

D 1 I — —— S S i i i i i i

0 50 100 150 200 250 300 350 400 450 500
Time in days

See Also
SLRT Overload Options | sLrtTETMonitor

6-16

Data Logging with Simulation Data Inspector (SDI)

More About

. “Trace or Log Data with the Simulation Data Inspector” on page 6-22
. Simulation Data Inspector

6-17

6 Signals and Parameters

Parameter Tuning and Data Logging

6-18

This example shows how to use real-time parameter tuning and data logging with Simulink® Real-
Time™. After the example builds the model and downloads the real-time application,

slrt _ex param_tuning, to the target computer, the example executes multiple runs with the gain
'Gain1/Gain' changed (tuned) before each run. The gain sweeps from 0.1 to 0.7 in steps of 0.05.

The example uses the data logging capabilities of Simulink Real-Time to capture signals of interest
during each run. The logged signals are uploaded to the development computer and plotted. A 3-D
plot of the oscillator output versus time versus gain is displayed.

Open, Build, and Download Model to the Target Computer

Open the model, slrt_ex param_tuning. The model configuration parameters select the
slrealtime. tlc system target file as the code generation target. Building the model creates a real-
time application, slrt _ex param tuning.mldatx, that runs on the target computer.

model = 'slrt ex param tuning';
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, "examples',model));

G
noon P -

’)
» File Log

Simulink Real-Time example model

Copyright 2020 The MathWorks, Inc.

Build the model and download the real-time application, slrt _ex param tuning.mldatx, to the
target computer.

* Configure for a non-Verbose build.

* Build and download application.

set param(model, 'RTWVerbose', 'off");
set param(model, 'StopTime','0.2");
rtwbuild(model);

tg = slrealtime;
load(tg,model);

Successful completion of build procedure for: slrt _ex param tuning
Created MLDATX ..\slrt ex param tuning.mldatx

Build Summary

Parameter Tuning and Data Logging

Top model targets built:

Model Action Rebuild Reason

slrt_ex param_tuning Code generated and compiled Code generation information file does not exi:

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 28.55s

Run Model, Sweep 'Gain' Parameter, Plot Logged Data
This code accomplishes several tasks.
Task 1: Create Target Object

Create the MATLAB® variable, tg, that contains the Simulink Real-Time target object. This object
lets you communicate with and control the target computer.

* Create a Simulink Real-Time target object.

* Set stop time to 0.2s.

Task 2: Run the Model and Plot Results

Run the model, sweeping through and changing the gain (damping parameter) before each run. Plot
the results for each run.

» Ifno plot figure exist, create the figure.

+ If the plot figure exist, make it the current figure.

Task 3: Loop over damping factor z

* Set damping factor (Gain1/Gain).

» Start run of the real-time application.

» Store output data in outp, y, and t variables.
* Plot data for current run.

Task 4: Create 3-D Plot (Oscillator Output vs. Time vs. Gain)

* Loop over damping factor.

* Create a plot of oscillator output versus time versus gain.
* Create 3-D plot.

figh = findobj('Name', 'parsweepdemo');

if isempty(figh)
figh = figure;

set(figh, 'Name', 'parsweepdemo', 'NumberTitle', 'off');
else

figure(figh);
end

y = [1; flag = o;
for z=0.1: 0.05 : 0.7
if isempty(find(get(0, 'Children') == figh, 1))
flag = 1;
break;

6-19

6 Signals and Parameters

6-20

end

load(tg,model);

tg.setparam([model '/Gainl'],'Gain',2 * 1000 * z);
tg.start('AutoImportFileLog',true, 'ExportToBaseWorkspace', true);
pause(0.4);

outp = logsOut.FileLogSignals{1l}.Values;
y = [y,outp.Data(:,1)];
t = outp.Time;
plot(t,y);
set(gca, 'XLim', [t(1), t(end)]l, 'YLim', [-10, 10]);
title(['parsweepdemo: Damping Gain = ', num2str(z)]);
xlabel('Time"); ylabel('Output');
drawnow;
end
if ~flag
delete(gca);

surf(t(l : 200), 0.1 : 0.05 : 0.7, y(1 : 200, :)');

colormap cool

shading interp

h = light;

set(h, 'Position', [0.0125, 0.6, 10], 'Style', 'local');

lighting gouraud

title('parsweepdemo: finished');

xlabel('Time"'); ylabel('Damping Gain'); zlabel('Output');
end

parsweepdemo: finished

10 ~

Output
3

0.04
0.2 0.02

.) 0.01
Damping Gain 0 0 Time

Parameter Tuning and Data Logging

Close Model

When done, close the model.

close system(model,0);

See Also
slrtTETMonitor

More About

. “Trace or Log Data with the Simulation Data Inspector” on page 6-22
. Simulation Data Inspector

6-21

6 Signals and Parameters

Trace or Log Data with the Simulation Data Inspector

6-22

With the Simulation Data Inspector and Simulink Real-Time, you can trace signal data with data
logging in immediate mode or log signal data with data logging in buffered mode. In immediate mode,
you view the output in real time as the application produces it.

The application can produce more data than the target computer can transmit in real time to the
development computer. Data accumulates in the network buffer, and, if the buffer fills up, the kernel
drops data points.

To avoid dropped data points caused by network buffer overruns, you can use buffered logging mode.
In buffered mode, you connect signals to File Log blocks in the model. In the real-time application,
these blocks store data for the buffered signals on the target computer. At the end of execution, the
real-time application transmits the data to the development computer for display in the Simulation
Data Inspector. You can then view the most important signals immediately and view the buffered
signals afterward.

Buffered logging mode supports decimation and conditional block execution semantics. Some
examples are logging buffered data by enabling data logging for a signal inside a for-iterator,
function-call, or enabled/triggered subsystem. For more information, see Simulation Data
Inspector.

To set up the model for logging signal data:

1 Openslrt ex osc.

2 Select the MuxOut output signal, place your cursor over the signal, and select Enable Data
Logging.

3 Double-click the File Log block. The Decimation value is 1.

To set up the Simulation Data Inspector:

Open the Simulation Data Inspector (M).

Click Layout (mm),
3 Select two horizontal displays.

To view the simulation data:

1 Build and download slrt ex osc.
2 Start real-time execution.

When the Simulation Data Inspector button glows \"f\', click the top display and select the Sum
output signal.
4 Click in the bottom display and select the Mux output signals.

Trace or Log Data with the Simulation Data Inspector

Simulation Data Inspector - untitled™

Q 4 < K.
Inspect Compare | MuxOut(1)
Filter Signals
@ NAME LINE 8| ool
~ Run 2: sirt_ex_osc @ TargetPC1[FileLog] [...
- MuxOut
- o MuxOut(1) — .
MuxOut(2) -]
e |
! 001
* o
* .Mux[.}m(z] i i i ! 1 i 1 1 i ! i i i I
s T T STy
Archive (1) L I T R TR R RR AT RATI R PR I R R
Properties ~ 0 02 04 08 08 10 12 14 18 18 20 22 24 28 28 a0
5 Stop real-time execution.
KA

When the Sum output appears, click Fit to View (= =),

6-23

6 Signals and Parameters

6-24

Simulation Data Inspector - untitled™

Q c4 <

® | aa S C ¥
Inspect Compare B MuxOut(1)
Filter Signals
@ NAME e o001]
~ Run 2: sirt_ex_osc @ TargetPC1[FileLog] [...
- - MuxOut
MuxOut(1) —
04
) D —
‘ 001
- 002
8.0 81 2 83 &4 &5 65 &7 s 80 7.0
* B MuxOut(2)
10— — T ———————————————r—
05
0
05
Archive (1) AN o qe Lyttt
Properties ~ 5.0 81 52 53 54 55 56 57 55 59 74

To zoom in on a time segment of interest, for example, 10.0-10.1 s, click Zoom in Time (.i) and

use the mouse and mouse wheel.

Trace or Log Data with the Simulation Data Inspector

/) Simulation Data Inspector - untitled™

< _ am
Q 4 > | mm T H I O JiE «
Inspect Compare B MuxOut(1)
Filter Signals
@ e E 0.01 4
~ Run 2: sirt_ex_osc @ TargetPC1[FileLog] [...
- - MuxOut
MuxOut(1) —
0
o D ———
* 001 h
- 002]
00 .01 6.02 6.03 5.04 505 508 .07 6.08 6.00 8.10
¢ B MuxOut(2)
10
054
0
051
Archive (1) ~ an
Properties ~ 500 601 6.02 6.03 6.04 5.05 5.08 607 6.08 6.00 a.10

7 To save the Simulation Data Inspector session as an MLDATX file, click Save.

See Also

More About

. “Data Logging with Simulation Data Inspector (SDI)” on page 6-13
. Simulation Data Inspector

6-25

6 Signals and Parameters

External Mode Usage

6-26

When setting up signal triggering (Source set to signal), explicitly specify the element number of the
signal in the Trigger signal:Element box. If the signal is a scalar, enter a value of 1. If the signal is a
wide signal, enter a value from 1 to 10. When uploading Simulink Real-Time signals to Simulink
scopes, do not enter Last or Any in this box.

The Direction:Holdoff value does not affect the Simulink Real-Time signal uploading feature.

See Also

More About

. “Trace Signals by Using Simulink External Mode” on page 6-10
. “Trace or Log Data with the Simulation Data Inspector” on page 6-22
. “Simulink External Mode Interface”

Signal Logging Basics

Signal Logging Basics

Signal logging acquires signal data during a real-time run and stores it on the target computer. After
you stop the real-time application, you transfer the data from the target computer to the development
computer for analysis. You can plot and analyze the data, and later save it to a disk on the
development computer.

Simulink Real-Time signal logging samples at the base sample time.

* Simulink Real-Time Explorer works with multidimensional signals in column-major format.
* Some signals are not observable.

You can log signals by:

* Mark signals for immediate logging to the Simulation Data Inspector.
* Connect signals to File Log blocks for buffered logging to the Simulation Data Inspector.

See Also

More About

. “Troubleshoot Signals Not Accessible by Name” on page 6-61
. “Display and Filter Hierarchical Signals and Parameters” on page 6-57

6-27

6 Signals and Parameters

Tune Parameters by Using Simulink Real-Time Explorer

6-28

You can use Simulink Real-Time Explorer to change parameters in your real-time application while it
is running or between runs. You do not need to rebuild the Simulink model, set the Simulink interface
to external mode, or connect the Simulink interface with the real-time application.

This procedure uses the model slrt_ex osc.

Set Up the Simulation Data Inspector

Before tuning parameter values, set up the Simulation Data Inspector:

1

2
3
4

N o G

Click Layout (=),

Select two horizontal displays.

Open model slrt _ex osc. Set property Stop time to inf. In the Simulink Editor, on the Real-
Time tab, select Run on Target > Stop Time and set Stop Time to inf.

Connect to the target computer. Toggle the Disconnected indicator to Connected.

Build and download the real-time application to the target computer. Click Run on Target.

In the Simulation Data Inspector, drag the MuxOut(1) signal to the top display and drag the
MuxOut(2) signal to the bottom display.

Tune Parameters by Using Simulink Real-Time Explorer

/' Simulation Data Inspector - untitled™

Q ~ L3
Inspect Compare B MuxQut(1)
: Filter Signals
Run 3: sirt_ex_osc @ TargetPC1 [Current] 0.005 4
. + [MuxOut
v MuxOut(1) — g
MuxOut(2) E—
E 0.005 |
3 -0.010
-0.015 |
-0.020
i -0.025 |
7.0 71 72 73 7.4 75 76 77 78 78 a0
n B MuxOut(2)
10
05
o4
-0.5 4
Archive (2) 10
Praperties 7.0 71 72 73 74 75 78 77 7E 78 20

View Initial Parameter Values

To view the initial parameter values:

1 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT Explorer.
2 Select the Parameters tab. The tab lists parameters Amplitude, Frequency, A, and C with

their values.

Modify Parameter Values

To update a parameter value:

1 Select the parameter value for the Amplitude parameter and change the value to 0.5.
2 Select the parameter value for the Frequency parameter and change the value to 15.

6-29

6 Signals and Parameters

6-30

After each change, the signal display in the Simulation Data Inspector alters to match the effect of
the parameter change. You can change multiple parameters at the same time by using batch mode.
For more information, see “Tune Parameters by Using Batch Mode and Update All” on page 6-33.

See Also

More About

. “Simulink Real-Time Operation Modes”

. “Display and Filter Hierarchical Signals and Parameters” on page 6-57
. “Tune Parameters by Using Batch Mode and Update All” on page 6-33
. “Troubleshoot Parameters Not Accessible by Name” on page 6-62

Tune Parameters by Using MATLAB Language

Tune Parameters by Using MATLAB Language

To change block parameters, you can use the MATLAB functions. With these functions, you do not
need to set the Simulink interface to external mode or connect the Simulink interface with the real-
time application.

You can download parameters to the real-time application while it is running or between runs. You
can change parameters in your real-time application without rebuilding the Simulink model and
change them back to their original values by using Simulink Real-Time functions.

Note Simulink Real-Time does not support parameters of multiword data types.

This procedure uses the Simulink model slrt_ex osc. You must have already created and
downloaded the real-time application to the default target computer.

1

To create the target object and application object, in the MATLAB Command Window, type:

tg = slrealtime('TargetPCl');

app = slrealtime.Application('slrt ex osc');

The Parameters property of the Application object is a structure that includes a BlockPath and
BlockParameterName for each parameter. To display the parameter name of the first of
parameter in the real-time application, in the MATLAB Command Window, type:

app.Parameters(1l).BlockParameterName
To change the gain for the Gainl block, type:

pt = setparam(tg, 'Gainl', 'Gain', 800)

The setparam method returns a structure that stores the source information, the previous value,
and the new value.

When you change parameters, the changed parameters in the target object are downloaded to
the real-time application. The development computer displays this message:

pt =
Source: {'Gainl' 'Gain'}

OldValues: 400
NewValues: 800

The real-time application runs. The plot frame updates the signals for the active scopes.
Stop the real-time application. In the Command Window, type:

stop(tg)
To reset to the previous values, type:

pt = setparam(tg, pt.Source{l}, pt.Source{2}, pt.OldValues)
pt =
Source: {'Gainl' 'Gain'}

0ldValues: 800
NewValues: 400

6-31

6 Signals and Parameters

See Also

More About

. “Simulink Real-Time Operation Modes”
. “Troubleshoot Parameters Not Accessible by Name” on page 6-62

6-32

Tune Parameters by Using Simulink External Mode

Tune Parameters by Using Simulink External Mode

To connect your Simulink model to your real-time application, you use Simulink external mode
simulation. The model becomes a user interface to your real-time application. Set up the Simulink
interface in external mode to establish a communication channel between your Simulink model and
your real-time application.

In Simulink external mode, when you change parameters in the Simulink model, Simulink downloads
those parameters to the real-time application while it is running. You can change parameters in your
program without rebuilding the Simulink model to create a new real-time application.

Note Simulink Real-Time does not support parameters of multiword data types.

After you download your real-time application to the target computer, you can connect your Simulink
model to the real-time application. This procedure uses the Simulink model slrt ex osc. You must
have already built and downloaded the real-time application for that model.

1 Openmodel slrt ex osc.

2 Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.

3 Build and download the real-time application to the target computer. Click Run on Target.

The real-time application begins running on the target computer.
4 From the Simulation block diagram, double-click the block labeled Gain1
5 In the Block Parameters: Gainl parameter dialog box, in the Gain text box, enter 800. Click OK.

When you change a MATLAB variable and click OK, the changed parameters in the model are
downloaded to the real-time application.

6 To stop the simulation, click Stop.

7 Disconnect to the target computer. Toggle the Connected indicator to Disconnected.

The Simulink model is disconnected from the real-time application. If you then change a block
parameter in the Simulink model, the real-time application does not change.

Tune Parameters by Using Batch Mode and Update All

By using batch mode, you can tune multiple parameters and apply the tuning changes at once,
instead of tuning one parameter at a time. This example uses model slrt_ex osc. To open this
model, in the MATLAB Command Window, type:.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc'))

1 Openmodel slrt _ex osc.

2 In the Simulink Editor, on the Real-Time tab, click Run on Target.

3 Click Prepare > Batch Mode. The editor remains in batch mode until you click Batch Mode
again.

To set parameter values, you can set values either by clicking each block or by using the Model

Data Editor in the base workspace.
4 On the Real-Time tab, click Prepare > Signal Table.

6-33

6 Signals and Parameters

5 Inthe Model Data Editor, click the Parameters tab. Modify parameters values in the Model Data
Editor in the base workspace.

6 Click Prepare > Update All Parameters.

7 To stop the simulation before it ends, click Stop.

See Also

More About

. “Simulink Real-Time Operation Modes”
. “Troubleshoot Parameters Not Accessible by Name” on page 6-62

6-34

Tunable Block Parameters and Tunable Global Parameters

Tunable Block Parameters and Tunable Global Parameters

To change the behavior of a real-time application, you can tune Simulink Real-Time tunable
parameters. In Simulink external mode, you can change the parameters directly in the block or
indirectly by using MATLAB variables to create tunable global parameters. Simulink Real-Time
Explorer and the MATLAB language enable you to change parameter values and MATLAB variables as
your real-time application is executing.

Note Simulink Real-Time does not support parameters of multiword data types.

Tunable Parameters

Simulink Coder defines two kinds of parameters that can be modified during execution: tunable block
parameters and tunable global parameters.

Tunable Block Parameters
A tunable block parameter is a literal expression that you reference in a Simulink block dialog box.

Suppose that you assign the value 5/2 to the Amplitude parameter of a Signal Generator block.
Amplitude is a tunable parameter.

Tunable Global Parameter

A tunable global parameter is a variable in the MATLAB workspace that you reference in a Simulink
block dialog box.

Suppose that you enter A in the Amplitude parameter of a Signal Generator block. Variable A is a
tunable parameter.

You can tune the values of MATLAB variables that are grouped in a parameter structure. For
example:

1 Assign a parameter structure that contains the field Amp1l to variable A.

2 Enter A.Ampl in the Amplitude parameter of a Signal Generator block.

3 Change the amplitude of the signal generator by tuning the value of A. Ampl in the MATLAB
workspace during simulation.

Inlined Parameters

To optimize execution efficiency, you can change the Default parameter behavior option from
Tunable to Inlined on the Code Generation > Optimization pane.

You cannot tune inlined block parameters. You can define a tunable global parameter or
Simulink.Parameter object, enter it in the parameter field in the block dialog box, and tune the
MATLAB variable or object.

For more information about inlined parameters, see “Default parameter behavior”.

6-35

6 Signals and Parameters

Tune Global Parameters by Using External Mode

In external mode, Simulink Real-Time connects your Simulink model to your real-time application.
The block diagram becomes a user interface for the real-time application.

You can change a block parameter value during execution in the block dialog box. When you click
OK, Simulink transfers the new value to the real-time application. For more information, see “Tune
Parameters by Using Simulink External Mode” on page 6-33.

You can change a tunable global parameter during execution by assigning a new value to the
MATLAB workspace. You must then explicitly command Simulink to transfer the data. Do one of the
following:

e Press Ctrl+D.

* On the Real-Time tab, click Prepare > Signal Table. On the Parameters tab, edit the
parameters and click Update Diagram.

Tune Global Parameters by Using Simulink Real-Time Explorer

During real-time execution, Simulink Real-Time Explorer becomes a user interface for the real-time
application.

To access a block parameter value, navigate to the block in the Explorer model hierarchy. You can
change the value in a text entry box in the parameter window. When you apply the new value,
Simulink Real-Time transfers the new value to the real-time application. For more information, see
“Tune Parameters by Using Simulink Real-Time Explorer” on page 6-28.

You can access a tunable global parameter at the top level of the model hierarchy. Change it the same
way as you would a tunable block parameter.

You can use Simulink Real-Time Explorer instrument panels to tune block parameters and global
parameters.

Tune Global Parameters by Using MATLAB Language

To change the values of tunable block parameters and tunable global parameters during execution,
use the Simulink Real-Time command setparam. For more information, see “Tune Parameters by
Using MATLAB Language” on page 6-31.

These code examples use the model slrt_ex osc. To change a block parameter value, use a
nonempty block path and the parameter name. For example, to change the amplitude of the signal
generator:

rtwbuild(slrt _ex osc);

tg = slrealtime('TargetPCl');
load(tg, 'slrt ex osc')

start(tg);

setparam(tg, 'Signal Generator', 'Amplitude', 4.57)

To change a tunable global parameter, use the variable name. For example, to change the amplitude
of the signal generator via the parameter structure field A. Amp1:

rtwbuild(slrt _ex osc);
tg = slrealtime('TargetPCl');

6-36

Tunable Block Parameters and Tunable Global Parameters

load(tg, 'slrt ex osc')
start(tg);
setparam(tg, 'A.Ampl', 4.57)

See Also
getparam | setparam

More About

“Tune Inlined Parameters by Using Simulink Real-Time Explorer” on page 6-38
“Default parameter behavior”

“Specify Source for Data in Model Workspace”

“Troubleshoot Parameters Not Accessible by Name” on page 6-62

“Tune and Experiment with Block Parameter Values”

“Share and Reuse Block Parameter Values by Creating Variables”

“How Generated Code Stores Internal Signal, State, and Parameter Data”
“Preserve Variables in Generated Code”

6-37

6 Signals and Parameters

Tune Inlined Parameters by Using Simulink Real-Time Explorer

6-38

This procedure describes how you can tune inlined parameters through the Simulink Real-Time
Explorer.

Note Simulink Real-Time does not support parameters of multiword data types.

The procedure starts with the Simulink model slrt _ex osc _inlined. To open the model, in the
MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc inlined')))

Configure Model to Tune Inlined Parameters

1 Openmodel slrt ex osc inlined.

2 In the Simulink Editor, select the input to the Scope block and mark it for data logging by using
the Simulation Data Inspector.

3 Select the blocks containing the parameters that you want to tune. For example, this procedure
makes the Amplitude parameter of the Signal Generator block tunable. To represent the
amplitude, use the variable A.

a Double-click the Signal Generator block, and then enter A for the Amplitude parameter.
Click OK.
b Assign a constant to variable A. In the MATLAB Command Window, type:

A=14

The value is displayed in the MATLAB workspace.
4 Open the Configuration Parameters dialog box. On the Real-Time tab, click Hardware Settings.
5 Select Code Generation > Optimization > Default parameter behavior > Inlined.
6 Click Configure. The Model Parameter Configuration dialog box opens. The MATLAB workspace
contains the constant you assigned to A.
7 Select the line that contains your constant. Click Add to table.

Tune Inlined Parameters by Using Simulink Real-Time Explorer

=): Model Parameter Configuration: slrt_ex_osc

Diescription

Cefine the global (funable) parameters foryour model. These parameters will affect the generated code by enabling accessto parameters

Source list Glohal itunahle) parameters

|W‘-TL”%B warkspace V| Marme Storage class Storage type qualifier

Maodel default w L
MHame ilA l I
1

Refresh list Add to tahle == [et Femuove

Feady []2][cancel][Help][Apply

8 Click Apply, and then click OK.

9 In the Configuration Parameters dialog box, click Apply, and then OK.

10 Save the model as slrt_ex osc_inlined. On the Simulation tab, from Save, click Save As.
For example, save it as slrt_ex osc_inlined.

11 Build and download the model to your target computer. On the Real-Time tab, click Run on
Target.

Initial Value

This procedure assumes that you have completed the steps in “Configure Model to Tune Inlined
Parameters” on page 6-38.

1 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT Explorer.

2 Loadthe slrt ex osc inlined real-time application. Click Load Application, select the
application, and click Load.

3 Set the application stop time to inf.

4 To start execution, click Start.

5 Inthe Applications pane, expand both the real-time application node and the Model Hierarchy
node.

6 Select the Parameters tab.

6-39

6 Signals and Parameters

! Simulink Real-Time Explorer

r |
TargetPC1 3’ |> Stop Time s EE EE
u Connected Load Application Start Inf Data TET Import
Inspector Manitor File Log
CONNECT TO TARGET COMPUTER PREPARE RUN OM TARGET REVIEW RESULTS Y
GETS E Signals Parameters Target Configuration System Log Viewer [~}
_ « Target Computers C— .
| 4= | N R TargetPC1 (default) | = |Contents of: sirt_ex_osc_inlined {only) [}
Parameters available fo fune on targef computer
Block Path Name Value Type Size
A 4 double 1]
¥ APPLICATION TREE [~]
sirt_ex_osc_inlined
I4 LOADED: slrt_ex_osc_inlined

7 Open the Simulation Data Inspector and view the signals you marked for signal logging. On the
Real-Time tab, click Data Inspector.

6-40

Tune Inlined Parameters by Using Simulink Real-Time Explorer

) Simulation Data Inspector - untitled®

Q ~ 1.3
Inspect Compare u Muxc1(1) mMuxc1(2)
Filter Signals
« Run 5: sirt_ex_osc_inlined @ TargetPC1 [C...]
. - EH Mux:1
' Mux:1(1) —
v Mux:1(2) s
E . == TmpSignal ConversionAITAQSigLoggi...
¥ Il A Il n [1 [l
—_ 4 -.-:--.”.-‘\/\l IR AR 7 IBDRYERER

Archive (4)

PFODEI‘UES o 001 002 0.03 0.04 0.05 0.08 0.07 008 0.09 0.10 o1 012 013 0.14 015 0.16 017 0.18 019 0.20

Updated Value

This procedure assumes that you have completed the steps in “Initial Value” on page 6-39.

1 Change the value of the MATLAB variable A to 2. In Simulink Real-Time Explorer, type 2 into the
Value box, and then press Enter.

2 The Simulation Data Inspector display changes to show the new signal amplitude.

3 To stop execution, click Stop.

See Also

More About

. “Tune Inlined Parameters by Using MATLAB Language” on page 6-42
. “Display and Filter Hierarchical Signals and Parameters” on page 6-57
. “Troubleshoot Parameters Not Accessible by Name” on page 6-62

6-41

6 Signals and Parameters

Tune Inlined Parameters by Using MATLAB Language

6-42

You can tune inlined parameters through the MATLAB interface.

Note Simulink Real-Time does not support parameters of multiword data types.

You must have already built and downloaded the model slrt ex osc inlined. To open this model,
in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc _inlined'))

With the real-application slrt _ex osc_inlined already running, you can tune inlined parameter A
by using the setparam function.

1 Save the following code in a MATLAB file. For example, change_inlineA.

A =4,
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt _ex osc_inlined'));
rtwbuild('slrt ex osc inlined');
tg = slrealtime;
load(tg, 'slrt ex osc inlined');
setparam(tg,'','A',2);
2 Execute that MATLAB file. Type:

change_inlineA
3 To see the new parameter value, type:

getparam(tg,'','A")
See Also
More About
. “Troubleshoot Parameters Not Accessible by Name” on page 6-62

Tune Parameter Structures by Using Simulink Real-Time Explorer

Tune Parameter Structures by Using Simulink Real-Time
Explorer

In this section...

“Create Parameter Structure” on page 6-43

“Replace Block Parameters with Parameter Structure Fields” on page 6-44
“Save and Load Parameter Structure” on page 6-44

“Tune Parameters in a Parameter Structure” on page 6-45

To reduce the number of workspace variables you must maintain and avoid name conflicts, you can
group closely related parameters into structures. See “Organize Related Block Parameter Definitions

in Structures”.

In this example, the initial model slrt ex osc has four parameters that determine the shape of the
output waveform.

Block Parameter Structure Field Initial Value
Expression

Signal Generator Freq spkp.sg freq 20

Gain Gain spkp.g_gain 100072

Gainl Gain spkp.gl gain 2*%0.2*1000

Gain2 Gain spkp.g2 gain 100072

Create Parameter Structure

Open model slrt_ex osc, and save a copy of the model to a working folder.
Open the Base Workspace in the Model Explorer. On the Modeling tab, click Base Workspace.

Click Add Simulink Parameter [::..

In the Name column, type the name spkp.

In the Storage class field, select ExportedGlobal.
In the Value field, type as one line:

oUuh WNK

struct('sg freq',20, 'g2 gain',1000"2, ...
‘gl gain',2*0.2*1000, 'g gain',100072)
7 The field values duplicate the literal values in the dialog boxes. To change the field values, in row

spkp, click the Value cell and click Edit m'

6-43

6 Signals and Parameters

& Model Explore - O
Bt O 4 B HE-E-H-@ M + &5
Search: | by Name v | Mame: | | @4, Search
Model Hierarchy E E Contents of: Base Workspace (only) |F'|:Q" Contents | Simulink.Parameter: spkp
~ P2 simuiink Root — . |
—] - . Value: <1x1 struct>
Column View: - -
e — Default Show Details 10 object(s) |-
ex_slrt_osc_struct Name BlockType Value Data type: |struct
E e g Dimensions: |[1 1] | Complexity
E ans <1x1 SimulinkRealTime.target>
E block_name wpoosc/Signal Generator’ Minimum: | Maximum:
B
Unit: |
% model 'ex_slrt_osc_struct’
% model_name "wpoosc Code generation options
HH obj <1x1 desktop.xpcdesktop> Storage dlass: | ExportedGlobal
E scl <1x1 SimulinkRealTime.hostScope =
[;?.'1] spkp <1x1 struct> Alias: |
E tg <1x1 SimulinkRealTime.target> Alignment: |_1
A
spkp.Value o
Field = Value
HH sg_freq 20
1 g2_gain 1000000
EE gl_gain 400
H g_gain 1000000
>
ply
Contents Search Results

8 Click Apply.

9 Save the modelas slrt _ex osc struct. On the Simulation tab, from Save, click Save As.

Replace Block Parameters with Parameter Structure Fields

1 Inthe Signal Generator block, replace the value of parameter Frequency with

spkp.sg_freq.

2 Inthe Gain block, replace the value of parameter Gain with spkp.g gain.
3 Inthe Gainl block, replace the value of parameter Gain with spkp.gl gain.
4 Inthe Gain2 block, replace the value of parameter Gain with spkp.g2 gain.

Save and Load Parameter Structure

1 In Model Explorer, right-click row spkp.

2 C(Click Export selected and save the variable as slrt _ex osc struct.mat.

To load the parameter structure when you open the model, add a load command to the PreLoadFcn
callback. To remove the parameter structure from the workspace when you close the model, add a
clear command to the CloseFcn callback. For more information, see “Model Callbacks”.

6-44

Tune Parameter Structures by Using Simulink Real-Time Explorer

Tune Parameters in a Parameter Structure

If you have not completed the steps in “Create Parameter Structure” on page 6-43, “Replace Block
Parameters with Parameter Structure Fields” on page 6-44, and “Save and Load Parameter
Structure” on page 6-44, you can start by using the completed model. To open the model, in the
MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc struct'));
load(fullfile(matlabroot, 'toolbox', 'slrealtime’,
'examples', 'slrt ex osc struct.mat'));

Build and download the model to your target computer.

Open Simulink Real-Time Explorer. In the Real-Time tab, click Prepare > SLRT Explorer.
Set the real-time application Stop Time to Inf.

Click the Parameters tab.

Start the real-time application.

Open the Simulation Data Inspector and view the signals from the real-time application.

In the Values text box for spkp(1) .gl gain, change the value to 800 and press Enter.
Observe the change to the signals in the Simulation Data Inspector.

Stop the real-time application.

CoONOCURARWNER

See Also

More About

. “Organize Related Block Parameter Definitions in Structures”
. “Display and Filter Hierarchical Signals and Parameters” on page 6-57
. “Model Callbacks”

6-45

6 Signals and Parameters

Tune Parameter Structures by Using MATLAB Language

In this section...

“Create Parameter Structure” on page 6-46
“Save and Load Parameter Structure” on page 6-47
“Replace Block Parameters with Parameter Structure Fields” on page 6-47

“Tune Parameters in a Parameter Structure” on page 6-47

To reduce the number of workspace variables you must maintain and avoid name conflicts, you can
group closely related parameters into structures. See “Organize Related Block Parameter Definitions
in Structures”.

In this example, the initial model slrt_ex osc has four parameters that determine the shape of the
output waveform.

Block Parameter Structure Field Initial Value
Expression

Signal Generator Freq spkp.sg freq 20

Gain Gain spkp.g_gain 100072

Gainl Gain spkp.gl gain 2*%0.2*1000

Gain2 Gain spkp.g2 gain 100072

Create Parameter Structure

1 Openmodel slrt_ex osc and save a copy to a working folder.
2 To create a parameter structure, in the MATLAB Command Window, enter:

kp = struct(...
'sg freq', 20,
‘g2 gain',1000"2,
‘gl gain', 2*0.2*1000,
'g gain',1000"2)

kp =

struct with fields:

sg freq: 20
g2 gain: 1000000
gl gain: 400

g gain: 1000000
3 To make the parameter structure tunable on the target computer:

spkp = Simulink.Parameter(kp);
spkp.StorageClass = 'ExportedGlobal';
spkp.Value

ans =

struct with fields:

6-46

Tune Parameter Structures by Using MATLAB Language

sg_freq: 20
g2 gain: 1000000
gl gain: 400

g gain: 1000000

Save and Load Parameter Structure

To save the parameter structure spkp for later use, type:

save 'slrt ex osc struct.mat', 'spkp'

To load the parameter structure when you open the model, add a Load command to the PreLoadFcn
callback. To remove the parameter structure from the workspace when you close the model, add a
clear command to the CloseFcn callback. For more information, see “Model Callbacks”.

Replace Block Parameters with Parameter Structure Fields

1 Inthe Signal Generator block, replace the value of parameter Frequency with
spkp.sg_freq.

2 Inthe Gain block, replace the value of parameter Gain with spkp.g gain.

3 Inthe Gainl block, replace the value of parameter Gain with spkp.gl gain.

4 In the Gain2 block, replace the value of parameter Gain with spkp.g2 gain.

Tune Parameters in a Parameter Structure

If you have not completed the steps in “Create Parameter Structure” on page 6-46, “Replace Block
Parameters with Parameter Structure Fields” on page 6-47, and “Save and Load Parameter
Structure” on page 6-47, you can start by using the completed model. To open the model, in the
MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc_struct'));
load(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc struct.mat'));

1 Build and download the model to the target computer.

rtwbuild('slrt ex osc struct');

tg = slrealtime('TargetPCl');

load(tg, 'slrt ex osc struct');
2 Set stop time to inf.

setStopTime(tg,inf);
3 Sweep the Gain value of the Gainl block from 200 to 800.

start(tg);
for g = 200 : 200 : 800
setparam(tg, 'spkp.gl gain', g);
pause(1l);
end
stop(tg);
4 View the signals in the Simulation Data Inspector.

Simulink.sdi.view;

6-47

6 Signals and Parameters

See Also

More About

. “Organize Related Block Parameter Definitions in Structures”
. “Model Callbacks”

6-48

Define and Update Inport Data

Define and Update Inport Data

In this section...

“Required Files” on page 6-49
“Map Inport to Use Square Wave” on page 6-49
“Update Inport to Use Sawtooth Wave” on page 6-51

You can create root-level input ports and use the Root Inport Mapper to define input data. You can
update the input data without rebuilding the model by using the MATLAB language.

Required Files

This procedure has these file dependencies:

* slrt ex osc inport — Damped oscillator that takes its input data from input port Inl and
sends its multiplexed output to output port Outl. To open this model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
"examples', 'slrt ex osc inport'))

* slrt ex inport square.mat— One second of output from a Signal Generator block that is
configured to output a square wave. To load this data, in the MATLAB Command Window, type:

(load(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex inport square.mat'))

* slrt_ex inport_sawtooth.mat — One second of output from a Signal Generator block that is
configured to output a sawtooth wave. To load this data, in the MATLAB Command Window, type:

(load(fullfile(matlabroot, 'toolbox', 'slrealtime’,
‘examples', 'slrt_ex_inport sawtooth.mat'))

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave

1 Openmodel slrt _ex osc_inport and save a copy to a working folder.
2 Loadslrt ex inport square.mat and assign square to a temporary workspace variable for
use with the Root Inport Mapper.

waveform = square;

3 Double-click input port Inl.

4 C(Clear Interpolate data, and then click Connect Input.

5 In the Root Inport Mapper, click From Workspace and select variable waveform. Clear the
other variables.

6 In the Save to text box, enter a name such as ex slrt inport waveform osc.mat, and then
click OK.

7 Select the map to model option Port order and, from the Options menu, select Update Model.

8 Click Map to Model.

9 To update the model with the mapped input data, select scenario waveform, and then click Mark
for Simulation.

6-49

6 Signals and Parameters

£ untitled - Root Inport Mapper: ex_sirt_inport_osc* - O *
ROOT INPORT MAPPER
I ™ Block Name © Signal Name .
| i % m @ D Generate MATLAB Script
= t@ ™ Block Path O Port Order B
Open Save From From From Signals Options Map to Mark for \] Run Script
hd Spreadsheet MAT-File Workspace b4 © Cusiom slexCustomMappingMy Custa = Model> Simulation
FILE | LINK |scENARIO | MAF TO MODEL | mopeL | SCRIPT | Iy
SOURCE | SCENARIO DATA.. | MAP MODE [+]
@I waveform Fort Order a2 MAPPING SUMMARY 4:02:08pm 61417
Total Scenario Datasets: 1 0 Mot Mapped @ 1Mapped 0'Warnings ©oermors
Marked For) waveform
Simulation:
SCENARIO DETAILS
Source: mwaveform - ex_slit_inport_waveform_osc.mat
Mode: Port Crder
STATUS | SCEMARIO SIGNAL PORT | BLOCK NAME MAFPPED SIGNAL
Q 1 In1 waveform.getElement(1)
10 Click Save.

Save the scenario under a name such as slrt_ex inport waveform scenario.mldatx.

11
12
signal and select Log Selected Signals.

Close the Root Inport Mapper. In the Inl block parameters dialog box, click OK.
To display the output of the Mux block with the Simulation Data Inspector, right-click the output

You can now save, build, download, and execute the real-time application. Display the output by using

the Simulation Data Inspector.

6-50

Define and Update Inport Data

4\ Simulation Data Inspector - untitled* — [m| X
©) Q (4 HlmE eI pir[ad
Inspect Compare

Q_ Filter Signals

NAME

~ Run 8: ex_slrt_inport_osc

o Mux:1[1]

TET.BaseRate. maxTET

[

Data Type
Sample Time
Model

Block Name
Block Path
Port
Dimensions
Channel

Run

Override Global Toler... no
Absolute Tolerance 0

Relative Tolerance

Time Tolerance
Interp Method
Sync Method

TET.BaseRate. minTET

TET.BaseRate TET

B Muxc1[1] B Mux:1[2]
a

Mux:1[2]

B
double =
0.00025
ex_slrt_inport_osc A
Mux
ex_sirt_inport_osc/Mux -4
1
121 =
121
Run 8: ex_sirt_inport_. .. =
7
0.00%
0 K]
linear
: E]
union 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0

Update Inport to Use Sawtooth Wave

You can update the inport data to use a different data file without rebuilding the real-time application.
The slrt_ex osc_inport.mldatx file must be in the working folder.

1

Load slrt_ex inport sawtooth.mat, and then assign sawtooth to the temporary variable
that you used with the Root Inport Mapper.

load(docpath(fullfile(docroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex inport sawtooth.mat')));

waveform = sawtooth;

Create an application object.

app_object = SimulinkRealTime.Application('slrt ex osc inport');

6-51

6 Signals and Parameters

3 Update the application object.

updateRootLevelInportData(app_object);
4 Load the updated object to the target computer and execute it.

tg = slrealtime;
load(tg, 'slrt ex osc inport');
start(tg);
5 Display the output by using the Simulation Data Inspector.

4\ Simulation Data Inspector - untitled* s
@ Q ~ mmE | Rkl Ad
Inspect Compare B Mwc[1] W Mux:12]
Q Filler Signals
- NAME LINE o 8
- Run 8: ex_sIrt_inport_osc
Mux:1[1] ———
a TETBaseRate.minTET — v
TETBaseRate maxTET]
! TET.BaseRale TET —
Mux:1[2] — :
t « Run 9: ex_sirt_inport_osc
- V| M) — E 1 | | |
. TETBaseRate.minTET ——
TET.BaseRate. maxTET —
TETBaseRale TET — e
¥ O ——
@ 3
PROPERTIES TWALLES 2 I I
MName Mux:1[2]
Line —
Units !
Data Type double
Sample Time 0.00025 .
Model ex_sli_inport_osc
Block Name Mux
Block Path ex_slrt_inport_osc/Mux 1
Port 1
Dimensions 2]
Channel 21 =
Run Run 9: ex_sirt_inport_...
Override Global Toler... no
Absolute Tolerance 0 “
Relative Tolerance 0.00%
Time Tolerance 0 4
Interp Method linear
Sync Method union a 0.1 0.2 0.3 0.4 05 06 07 [1X:} 0g 10

6-52

Define and Update Inport Data

See Also

More About

. “Define and Update Inport Data by Using MATLAB Language” on page 6-54
. “Load Data to Root-Level Input Ports”

. “Inport Data Mapping Limitations” on page 6-56

. “Data Logging with Simulation Data Inspector (SDI)” on page 6-13

6-53

6 Signals and Parameters

Define and Update Inport Data by Using MATLAB Language

In this section...

“Required Files” on page 6-54
“Map Inport to Use Square Wave” on page 6-54
“Update Inport to Use Sawtooth Wave” on page 6-55

You can create root-level input ports and use the MATLAB language to define input data and to
update the input data without rebuilding the model.

Required Files

This procedure has these file dependencies:

*+ slrt ex osc inport — Damped oscillator that takes its input data from input port Inl and
sends its multiplexed output to output port Outl. To open this model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’,
‘examples', 'slrt ex osc inport'))

* slrt_ex inport_square.mat— One second of output from a Signal Generator block that is
configured to output a square wave. To load this data, in the MATLAB Command Window, type:

(load(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt_ex_inport square.mat'))

* slrt_ex inport_sawtooth.mat — One second of output from a Signal Generator block that is
configured to output a sawtooth wave. To load this data, in the MATLAB Command Window, type:

(load(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt_ex_inport sawtooth.mat'))

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
1 Openslrt ex osc inport.

model = fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc_inport'));
open_system(model);
save_system(model, 'H:\workdir\slrt ex osc inport.slx');
2 Loadslrt ex inport square.mat, and then assign square to a temporary workspace
variable.

load(docpath(fullfile(docroot, 'toolbox', 'slrealtime’,
'examples', 'slrt ex inport square.mat')));
waveform = square;

3 Openslrt ex osc inport/Inl

inport = [model '/Inl'l];

load system(inport);
4 Turn off inport data interpolation.

6-54

Define and Update Inport Data by Using MATLAB Language

set param(inport, 'Interpolate', 'off');
Set the external input variable.

set param(model, 'ExternalInput', 'waveform');
Load external input data.

set param(model, 'LoadExternalInput','on');
You can now build, download, and execute the real-time application.

rtwbuild(model) ;

tg = slrealtime('TargetPCl');
load(tg,model);

start(tg);

View the signals in the Simulation Data Inspector.

Simulink.sdi.view;

Update Inport to Use Sawtooth Wave

You can update the inport data to use a different data file without rebuilding the real-time application.
The slrt_ex osc_inport.mldatx file must be in the working folder.

1 Loadslrt ex inport sawtooth.mat, and then assign sawtooth to the temporary variable
that you used with the Root Inport Mapper.
load(docpath(fullfile(docroot, 'toolbox', 'slrealtime’,
'examples', 'slrt ex inport sawtooth.mat')));
waveform = sawtooth;

2 Create an application object.
app_object = SimulinkRealTime.Application('slrt ex osc inport');

3 Update the application object.
updateRootLevelInportData(app_object);

4 Download the updated object to the target computer and execute it.
tg = slrealtime;
load(tg, 'slrt ex osc inport');
start(tg);

5 View the signals in the Simulation Data Inspector.

Simulink.sdi.view;

See Also

More About

“Define and Update Inport Data” on page 6-49

“Load Data to Root-Level Input Ports”

“Inport Data Mapping Limitations” on page 6-56

“Data Logging with Simulation Data Inspector (SDI)” on page 6-13

6-55

6 Signals and Parameters

Inport Data Mapping Limitations
In Simulink Real-Time, you cannot:

* Create data at run time for each time step by using the input u = UT(t) for MATLAB functions or
expressions.

* Import complex values and asynchronous function-call signals into top-level input ports.
* Import signals of type Stateflow.SimulationData.State into top-level input ports.

See Also

More About

. “Define and Update Inport Data” on page 6-49
. “Load Data to Root-Level Input Ports”

6-56

Display and Filter Hierarchical Signals and Parameters

Display and Filter Hierarchical Signals and Parameters

In this section...

“Hierarchical Display” on page 6-57
“Filtered Display” on page 6-58

“Sorted Display” on page 6-59

In Simulink Real-Time Explorer, the default view of the signal and parameter lists shows the signals
and parameters only at the hierarchy level that you selected. You can display signals and parameters
for the current level and below and filter the display to show only the items that you are interested in.

Hierarchical Display

To show signals and parameters from the current level and below, navigate to the hierarchical level
that you are interested in. Click Contents of (=] on the toolbar).

The figure shows the contents of the top level of the slrt_ex sf car real-time application. To open
this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt ex sf car'))

6-57

6 Signals and Parameters

) Simulink Real-Time Explorer

TARGET

) >

2 11 &
Import
e LAz uar Fizlles

Inspector Monitor

REVIEW RESULTS

TargetPC1 Stop Time
Load Application
O Connected
CONMNECT TO TARGET COMPUTER PREPARE RUN ON TARGET
TARGETS TREE Signals Parameters

| = Target Computers
\27)| » @ TametPe1 (detau)
D TargetPC2
Signals availsble on target computer

Block Path

sirt_ex_sf_car/Engine:i
sirt_ex_si_canThreshold Calculation: 1
sirt_ex_sf_carThreshold Calculation:2
sirt_ex_sf_car/User Inputs:1
sirt_ex_sf_carn/User Inputs:2
slrt_ex_sf_car/Vehicle:1

sirt_ex_si_car/Vehicle:2

sirt_ex_sf_cartransmission:1

~ [*a| sirt_esx_sf_car
Engine
Threshold Calculation
User Inputs
Vehicle
~ [B] transmission
Torque Converter
transmission ratio

sirt_ex_sf_carftransmission:2
sirt_ex_sf_car/shiit_logic:1

I4 LOADED

Target Configuration

| E |Cor|tents of: slri_ex_sf_car (only)

System Log Viewer

Acquire list for st._.

Signal Mame Block Path

vehicle speed
transmission speed
impeller torque

output torque

1]

Filtered Display

To restrict the display to signals or parameters with a particular characteristic, use the Filter text

box. You can restrict the scope of the filtered display by selecting a level of the application in the

Application Tree panel.

Simulink Real-Time Explorer supports filtering by values in these columns:

* Signals — Block Path and Signal Name

» Parameters — Block Path and Name

For example, to restrict the display of signals and parameters to the shift logic subsystem, select
column Signal Name. Type shift logic into the Filter text box.

6-58

Display and Filter Hierarchical Signals and Parameters

) Simulink Real-Time Explorer

TARGET

@] i

TargetPC1 D Stop Time @ EE =
Load Application Import
@ connected o start Deta TE Fie Log

Inspector Monitor
CONMECT TO TARGET COMPUTER PREPARE RUN ON TARGET REVIEW RESULTS a
TARGETS TREE Signals Parameters Target Configuration System Log Viewer

+ Target Computers —
[2 | v @ TargetPC1 (default |%|Oontems of sirt_ex_sf_car (only) Q ‘ shift_logid ‘

D TargetPC2

Signals availsble on target computer Acquire list for st... | ﬂ || o " [&=] |

Block Path Signal Name Block Path

sirt_ex_sf_car/shift_logic:1

AFPFLICATION TREE

~ [*a| sirt_es_sf_car
Engine
Threshold Calculation
User Inputs
Vehicle
~ [B] transmission
Torque Converter
transmission ratio

I4 LOADED

Sorted Display

To group signals and parameters by columns, select the column head, hover the cursor near the right
border of the column head (displays the Sort by icon), and click the Sort by icon.

Explorer supports grouping by the following columns:

* Signals — Block Path and Signal Name
* Parameters — Block Path, Name, Value, Type, and Size

For example, to sort signals by name, right-click the Signal Name column and select the Sort by
icon.

6-59

6 Signals and Parameters

TARGET

5 AL
TargetPC1 p |> Stop Time @ EE =

@ Connected Load Application Start InsDat.a TE_I' ;:.Ir;pl_c:;
pector Monitor
CONMECT TO TARGET COMPUTER PREPARE RUM ON TARGET REVIEW RESULTS a
TARGETS TREE Signals Parameters Target Configuration System Log Viewer Ly
| = Target Computers ——
| |:|‘:',:| | b @ TargetPC1 (default) |E |Contents of. slrt_ex_sf_car (only) (@} ‘ ‘
3) TargetPC2 o
Signals available on target computer Acquire list for st... | ﬁ ” i " [&=] |
Block Path Signal Name + Block Path
sirt_ex_sf_car/Vehicle: 1 vehicle speed
i slrt_ex_si_carVehicle:2 transmission speed
l il sirt_ex_si_carfiransmission:2 output torgue
slrt_ex_si_carffransmission:1 impeller torque
sirt_ex_si_car/Engine:1
slrt_ex_si_canThreshold Calculation: 1

APPLICATION TREE sirt_ex_sf_car/Threshold Calculation:2
slrt_ex_sf_car/User Inputs:1
T sir_ex_sf_car sirt_ex_si_car/User Inputs:2
Engine slrt_ex_sf_car/shift_logic:1
Thrashold Calculation
User Inputs
Vehicle
= [P transmission
Torque Converter
transmission ratio

| @Highlightinh‘lodel Start Streaming |- Stop Streaming View Walues

14 LOADED

6-60

Troubleshoot Signals Not Accessible by Name

Troubleshoot Signals Not Accessible by Name

I cannot monitor, trace, or log some signal types in the real-time application.

What This Issue Means

You cannot monitor, trace, or log by name these types of signals in the real-time application:

» Virtual or bus signals (including signals from bus creator blocks and virtual blocks). For example,
assume that you connect the output of a Mux block (a virtual block) to a Simulink Scope block.
The Scope block displays the names of the Mux input signals rather than the names of the Mux
output signals.

* Signals that Simulink optimizes away after you set the Signal storage reuse or Block reduction
configuration parameters.
The output of a block that was optimized away is replaced with the corresponding input signal to
the block. To access these signals, make them test points.

» Signals of complex or multiword data types.

» If a block name consists only of spaces, Simulink Real-Time Explorer does not display a node for
signals from that block. To reference such a block:

* Provide an alphanumeric name for the block.
* Rebuild and download the model to the target computer.
* Reconnect the MATLAB session to the target computer.

Try This Workaround

Check the signal types for the issues described in “What This Issue Means” on page 6-61.

See Also
Gain

More About

. “Nonvirtual and Virtual Blocks”

. “Types of Composite Signals”

. “Signal storage reuse”

. “Block reduction”

. “Troubleshoot Parameters Not Accessible by Name” on page 6-62
. “Internationalization Issues” on page 6-63

External Websites
. MathWorks Help Center website

6-61

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

6 Signals and Parameters

Troubleshoot Parameters Not Accessible by Name

6-62

I cannot observe or tune some parameters in the real-time application.

What This Issue Means

Reasons that you cannot observe or tune some parameters in the real-time application are:

* Simulink Real-Time does not support parameters of multiword data types.

* During execution, you cannot tune parameters that change the model structure, for example, by
adding a port. To change these parameters, you must stop the execution, change the parameter,
and rebuild the real-time application.

Try This Workaround

Check the parameters for the issues described in “What This Issue Means” on page 6-62.

See Also

More About

. “Troubleshoot Signals Not Accessible by Name” on page 6-61
. “Internationalization Issues” on page 6-63

External Websites
. MathWorks Help Center website

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Internationalization Issues

Internationalization Issues

Simulink Real-Time inherits the internationalization support of the products that it works with:
Simulink, Simulink Coder, and Embedded Coder®. Signal and parameter names that include
Unicode® characters are displayed as expected in Simulink Real-Time Explorer and at the MATLAB
command line.

When you use the Simulation Data Inspector to observe signals, the non-ASCII signal names are
displayed as expected. For example, assume that the signal with ID 1 appears in an English-language
and a Japanese-language version of the same model. In the English-language version, the signal label
is inputl and the block path is blockl/block?2. In the Japanese-language version, the signal label
is A#1 1 and the block path is 7Avy% 1/70v% 2.

Third-party code (for example, parsers for vendor configuration files) sometimes does not support
cross-locale, cross-platform internationalization. For such code, you must give files and folders locale-
specific names. For example, when parsing a configuration file on an English-locale machine, name
the file and enclosing folder with English-locale-specific names.

See Also

More About

. “Troubleshoot Signals Not Accessible by Name” on page 6-61
. “Troubleshoot Parameters Not Accessible by Name” on page 6-62

6-63

Execution Modes

7 Execution Modes

Execution Modes

The Simulink Real-Time kernel has two mutually exclusive execution modes.

Interrupt mode — The scheduler implements real-time single-tasking and multitasking execution
of single-rate or multirate systems, including asynchronous events (interrupts). You can interact
with the target computer while the real-time application is executing at high sample rates. To use
this real-time mode:

* Leave the Force polling mode configuration parameter disabled (default).
* Leave the pollingThreshold application option at the default value.

Polling mode — The kernel executes real-time applications at sample times close to the limit of the
CPU. Using polling mode with high-speed and low-latency I/O boards and drivers enables you to
achieve real-time application sample times that you cannot achieve by using interrupt mode.
Because polling mode disables interrupts on the processor core where the model runs, it imposes
restrictions on the model architecture and on target communication. To use this real-time mode,
either:

* Enable the Force polling mode configuration parameter.

* Set the pollingThreshold application option sample time value to a rate below the base rate
of the model.

For more information, see Force polling mode and Application.

See Also
Thread Trigger | “TLC Command-Line Options”

Related Examples

“Concurrent Execution on Simulink® Real-Time™” on page 13-6

More About

7-2

“Set Configuration Parameters”

“Performance Optimization”

“About RTOS Tasks and Priorities”

“Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-4

Real-Time Application Execution

Working with the Target Computer
Command Line

* “Control Real-Time Application at Target Computer Command Line” on page 8-2
+ “Execute Target Computer RTOS Commands at Target Computer Command Line” on page 8-3

8 Working with the Target Computer Command Line

Control Real-Time Application at Target Computer Command

Line

8-2

The Simulink Real-Time software provides a set of commands that you can use to interact with the
real-time application on the target computer. You can load, start, stop, and check the status of the
real-time application.

These commands let you interact with real-time applications on standalone target computers that are
not connected to Simulink Real-Time software on a development computer.

To enter commands, type the commands by using a keyboard attached to the target computer or by
using an SSH utility (such as PuTTY) to send commands to the target computer from a development
computer.

The target computer commands are case-sensitive. For more information, see “Target Computer
Command-Line Interface”.

To read the target computer console log, open the Simulink Real-Time Explorer and click the
System Log Viewer tab. You can also export the system log by using the SystemLog function.

See Also
Simulink Real-Time Explorer | SystemLog | sLrtExplorer

Related Examples
. “Target Object Commands”
. “Target Computer RTOS System Commands”

Execute Target Computer RTOS Commands at Target Computer Command Line

Execute Target Computer RTOS Commands at Target Computer
Command Line

To enter target computer RTOS commands, type the commands by using a keyboard attached to the
target computer or by using an SSH utility (such as PuTTY) to send commands to the target computer

from a development computer.

The target computer commands are case-sensitive. For more information, see “Target Computer
Command-Line Interface”.

The command examples use the PuTTy SSH utility. You can download and install this utility from

wWww.putty.org.

1
2

5

Boot the target computer.
Connect the development computer and target computer. In the MATLAB Command Window,

type:

tg = slrealtime;

connect(tg);
Start the SSH utility. This example uses PuTTY.
Load the PuTTY session for the target computer and click Open.

% PuTTY Configuration

Categary:

- Keyboard
- Bell

- Features

= Window

- Appearance
- Behaviour
- Translation

[#- Selection

- Colours

- Connection

.. Data

- Proxy
- Telnet

- Rlogin

- SSH

- Serial

About

Basic options for your PuTTY session

Specify the destination you wart to connect to

Host Mame (or [P address) Port
[10.10.10.25 | |22 |
Connection type:

(JRaw () Telnet () Rlogin @ 55H () Seral

Load, save or delete a stored session
Saved Sessions
| TargetPC1_QNX |

Default SeﬁinES Load

Save

Delete

Close window on exit:
() Mwayz () MNever (@ Only on clean exit

Open Cancel

To configure the target computer date, log in to the PuTTY session as user root with password

root.

8-3

https://www.putty.org

8 Working with the Target Computer Command Line

8-4

6 Set the time zone. This example sets the time zone to Eastern Standard Time.

env TZ=EST5EDT
export TZ=ESTS5EDT
setconf CS TIMEZONE EST5EDT

7 Set the date and time. This example sets the date and time to September 10, 2019 at 11:25 AM.

date 091011252019
Tue Sep 10 11:25:15 EDT 2019

8 Set the hardware clock from the system date and time.

rtc -s hw
See Also

Related Examples

. “Target Object Commands”
. “Target Computer RTOS System Commands”

External Websites
. QNX Momentics IDE 7.0 User’s Guide
. QNX Momentics IDE 7.0 User’s Guide, Utilities Reference

https://www.qnx.com/developers/docs/7.0.0/index_frames.html
https://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.neutrino.utilities/topic/about.html

Tuning Performance

¢ “CPU Overload” on page 9-2

* “Monitor CPU Overload Rate” on page 9-3

* “Execution Profiling for Real-Time Applications” on page 9-8

* “Reduce Build Time for Simulink Real-Time Referenced Models” on page 9-12

9 Tuning Performance

CPU Overload

9-2

Sometimes a real-time application running on the target computer does not have enough time to
complete processing before the next time step. This condition is called a CPU overload. An overload is
registered every time an execution step is triggered while the previous step is running.

See Also
SLRT Overload Options

Related Examples
. “Monitor CPU Overload Rate” on page 9-3
. “Concurrent Execution on Simulink® Real-Time™” on page 13-6

More About
. “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-4

Monitor CPU Overload Rate

Monitor CPU Overload Rate

The SLRT Overload Options block outputs the current CPU overload count for the identified sample
rate.

This example shows how to design a model that uses the SLRT Overload Options block to monitor the
rate at which CPU overloads occur. The rate of CPU overloads information can be useful when tuning
performance of a model for which a low CPU overload rate is acceptable.

Open, Build, and Run the Model
In the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox','slrealtime', 'examples','slrt ex overload'));

double > /

TID M TID Count
SLRT
Owerload Oplions 3
 Max TET|f—®
Busy-wait TET
Subsystem
liowad
2 uint32

Model slri_ex_owverload
Simulink Real-Time example model

Caopyright 2020 The Math\Works, Inc.

Name the signal coming out from the outport of rate limiter block as Rate Limiter and log it in the
Simulation Data Inspector.

p = get param('slrt ex overload/Rate Limiter','PortHandles');

1 get param(p.Outport, 'Line');

set param(l, 'Name', 'Rate Limiter');
Simulink.sdi.markSignalForStreaming('slrt ex overload/Rate Limiter',1,'on');

Build the model.

set param('slrt ex overload', 'RTWVerbose', 'off');
rtwbuild('slrt ex overload');

Successful completion of build procedure for: slrt _ex overload
Created MLDATX ..\slrt ex overload.mldatx

Build Summary
Top model targets built:

Model Action Rebuild Reason

slrt ex overload Code generated and compiled Generated code was out of date.

9-3

9 Tuning Performance

9-4

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 30.403s

Download the application and run it on the target computer.

tg = slrealtime;
connect(tg);
load(tg, 'slrt ex overload');
start(tg);

pause(20);

stop(tg);

Open Simulation Data Inspector

To view the rate at which CPU overloads occur, open the Simulation Data Inspector.
In the MATLAB Command Window, type:

Simulink.sdi.view;

Examine CPU Overload Rate Data

In the Simulation Data Inspector, the graph shows:

* Bottom rising stair step signal -- This signal indicates the number of CPU overloads that occurred.

» Top rising stair step signal -- This signal indicates the number of CPU overloads that are allowed,
which is (occurred + 2).

* Rising slew rate -- This signal indicates the rate at which CPU overloads occur. When the rising
slew rate becomes greater than the top rising stair step signal, the rate of CPU overloads is
greater than are allowed.

Monitor CPU Overload Rate

4\ Simulation Dat.

Q 4 [N

Ins

pect Compare mallowed W count M Rate Limiter

Filter Signa

- Run 1: sirt_ex_overload @ myPC [Current]

. s allowed —

v count ——

B O——

¥

Archive

® ¢ P -

Properties

a Inspector - untitled* - m} *

Is

Modify Rate of CPU Overloads

To modify the rate at which CPU overloads occur in the model, modify the Constant2 parameter
value.

Modify Allowed Rate of CPU Overloads

To modify the rate of CPU overloads that are acceptable in the model, modify the RisingSlowLimit
parameter value.

Build and Run Model with Changed Overload Rates

In the MATLAB Command Window, type:

load(tg, 'slrt ex overload');

To modify the rate of CPU overloads that are acceptable in the model
tg.setparam('slrt ex overload/Rate Limiter', 'RisingSlewLimit',0.004);

To modify the rate at which CPU overloads occur in the model

tg.setparam('slrt _ex overload/Constant2', 'Value',4);

9-5

9 Tuning Performance

run the modified application on the target computer

start(tg);
pause(20);
stop(tg);

In the Simulation Data Inspector, compare the signal data from the simulation runs and observe the
change to the CPU overload rate.

4\ Simulation Data Inspector - untitled*

Q 4) ® |58 % | .-

Inspect Compare

Q- k| o

H allowed W count m Raie Limiter m allowed W count W Rate Limiter

Filter Signals

« Run 2: sirt_ex_overload @ myPC [Current]
allowed
count
TET

Rate Limiter

N

« O B ®

Archive (1) it
= Run 1: sirt_ex_overload @ myPC

@ &P~

s allowed
v count
TET

R

PI'OpBI'tiES e 0 1 2 3 4 5 [} T E 2 10 1 12 12 14 15 18 17 18 18 20

bdclose('all');

See Also
SLRT Overload Options

Related Examples

. “Concurrent Execution on Simulink® Real-Time™” on page 13-6

More About
. “CPU Overload” on page 9-2

9-6

Monitor CPU Overload Rate

“Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-4

9 Tuning Performance

Execution Profiling for Real-Time Applications

9-8

This example shows how you can profile the task execution time and function execution time of your
real-time application running on the target computer. Using that information, you can then tune its
performance.

Profiling is especially useful if the real-time application is configured to take advantage of multicore
processors on the target computer. To profile the real-time application:

» In the Configuration Parameters for the model, enable the collection of function execution time
data during execution.

* Build, download, and execute the model.

+ Start and stop the profiler.

+ Display the profiler data.

Profiling slightly increases the execution time of the real-time application.
Configure Real-Time Application for Function Execution Profiling

In this section, the model is slrt _ex mds and tasks. To open this model, open the subsystem
models first:

* slrt ex mds subsysteml
* slrt ex mds subsystem?2

slrt ex mds and tasks
1. Open model slrt_ex mds_and_tasks.

2. In the top model, open the Configuration Parameters dialog box. Select Code Generation >>
Verification.

3. For Measure function execution times, select Coarse (reference models and subsystems
only). The Measure task execution time check box is checked and locked. Or, in the MATLAB
command window, type:

set param('slrt _ex mds and tasks', 'CodeProfilingInstrumentation', 'Coarse');
4. Click OK. Save model slrt_ex mds _and tasks in a local folder.
Generate Real-Time Application Execution Profile

In this section, generate profile data for model slrt ex mds and tasks on a multicore target
computer.

This procedure assumes that you have configured the target computer to take advantage of multiple
cores. It also assumes that you previously configured the model for task and function execution
profiling.

1. Open, build, and download the model.
mdl = 'slrt ex mds and tasks';

open_system(mdl);
rtwbuild(mdl);

Execution Profiling for Real-Time Applications

tg = slrealtime;
load(tg,mdl);

When you include profiling, the Code Generation Report is generated by default. It contains links to
the generated C code and include files. By clicking these links, you can examine the generated code
and interpret the Code Execution Profile Report.

Code Generation Report — O %
& Find: I:Iﬁ_ﬁ % Match Case

Contents Code Generation Report for 'slrt_ex_mds_and_tasks'

Summary

Subsystem Report Model Information

Code Interface Report

Author The MathWorks, Inc.
Generated Code Last Modified By The MathWorks, Inc.
Model Version 1.36

[-]1 Model files

Tasking Mode MultiTasking

slrt_ex_mds_and_tasks.cpp

slrt_ex_mds_and_tasks.h Configuration settings at time of code generation

slrt_ex_mds_and_tasks_private.h

slrt_ex_mds_and_tasks_types.h Code Information

[-] Data files

System Target File slrealtime.tlc

slrt_ex_mds_and_tasks_data.cpp

[+] Shared files (2)

[+] Interface files (1)

Hardware Device Type
Simulink Coder Version

Timestamp of Generated

Intel->x86-64 (Linux 64)
9.3 (R2020b) 24-Mar-2020
Mon Apr 13 21:14:15 2020

Source Code

(] Other files (2) Location of Generated

Source Code

H:\Documents\MATLAB\Examples\slrealtime-ex16897675\New
Folder\slrt_ex_mds_and_tasks_slrealtime_rtw)\

Top Model

Referenced Models Type of Build

sirt_ex_mds_subsystem1 Objectives Specified

slrt_ex_mds_subsystem2

Additional Information

Code Generation Advisor Mot run

2. Start the profiler and then execute the real-time application.

startProfiler(tg);
start(tg);
pause(1l)
stopProfiler(tg);
stop(tg);

3. Display the profiler data.
profiler data = getProfilerData(tg)

plot(profiler_data)
report(profiler _data)

9-9

9 Tuning Performance

The Execution Profile plot shows the allocation of execution cycles across the four processors,
indicated by the colored horizontal bars. The model sections are listed in the Code Execution Profiling

Report. The cores are indicated by the numbers underneath the bars.

0

4 Execution Profile — O >
File Edit View Inset Tools Desktop Window Help k]
U de | @ | 0| &k E
Estimated Execution Time-line £, E5ME Q 4}
14 _| 14]
Model2_R4[0.004 0] F 13 | z
3
12 12
Model1 R4(0.004 0] F% i]] 41
2 2
10 10 [
Model2_R3{0.003 0] | | 2 |
1 2
s I sl
Model1_R3[0.003 0] ¢ i 3
4 3
78 7
Modell R2(0.0020] ¥ | 3
3 3
2 2 5]
Model2_R1[0.001 0] 1: 5 L b
1 1 1 1
6 6 5] 6
Model1_R1[0.001 0] 2 3 4 4
% 2 2 2
i I i i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time in seconds w1072
Start: Range: III.IIIIJ1S|

The Code Execution Profiling Report displays model execution profile results for each task.

» To display the profile data for a section of the model, in the Section column, click the Membrane

button next to the task.

» To display the TET data for the section in Simulation Data Inspector, click the Plot time series
data button.

* To view the section in Simulink Editor, click the link next to the Expand Tree button.

9-10

Execution Profiling for Real-Time Applications

» To view the lines of generated code corresponding to the section, click the Expand Tree button
and then click the View Source button.

Code Execution Profiling Report - O *

Code Execution Profiling Report for slrt ex mds _and_tasks

The code execution profiling report provides metrics based on data collected from real-time simulation. Execution times are calculated from data recorded by
instrumentation probes added to the generated code. See Code Execution Profiling for more information.

1. Summary
Total time 249937177
Unit of time ns
Command repon(=_'UniT5'= 'seconds’, 'ScaleFactor’, '1e-09',
"NumericFormat', '%0.0f);
Timer frequency (ticks per second) 4.20001e+09
Profiling data created 13-Apr-2020 20:52:29

2. Profiled Sections of Code

Section Maximum Average Maximum Average Calls
Turnaround Turnaround Execution Time Execution Time
Time in ns Time in ns in ns in ns
[+] Modell R1[0.0010] 36335 12427 36335 12427 2001 4 A
[+] Model? R1[0.001 0] 29099 13335 29099 13555 2003 4 A
[+] Modell R2[0.002 0] 108247 38432 108247 38432 1003 4 A
[+] Modell R3[0.003 0] 230666 73550 230666 73550 669 4 A
[-]1 Model? R3[0.003 0] 237935 98862 237935 98862 669 4 A
profiled_section 5 [Note 1] 235639 94498 235639 94498 667 4 A
[+] Modell R4[0.004 0] 87263 11897 87263 11897 309 4 A
[+] Model? R4[0.004 0] 164480 73342 164480 75342 304 4 A
Notes:

[1] Multiple entities in the model map to a single function in the generated code, as a result of code reuse. Click the entry in the Model column to highlight all
of the model entities. Browse through the model to identify all the highlighted entities.

3. Definitions

Execution Time: Time between start and end of code section, which excludes preemption time.

Turnaround Time: Time between start and end of code section, which includes preemption time.

9-11

9 Tuning Performance

Reduce Build Time for Simulink Real-Time Referenced Models

9-12

In a parallel computing environment, you can increase the speed of code generation and compilation
for models containing large model reference hierarchies. Achieve the speed by building referenced
models in parallel whenever conditions allow. For example, if you have Parallel Computing Toolbox
software, you can distribute code generation and compilation for each referenced model across the
cores of a multicore host computer. If you also have MATLAB Parallel Server™ software, you can
distribute code generation and compilation for each referenced model across remote workers in your
MATLAB Parallel Server configuration.

You can build referenced models in parallel on a compute cluster. In this way, you can more quickly
build and download real-time applications to the target computer.

For this procedure, you must have a functioning Simulink Real-Time installation on your development
computer.

1 Identify a set of worker computers, which can be separate cores on your development computer
or computers in a remote cluster running under Windows®.

2 Ifyou intend to use separate cores on the development computer, install Parallel Computing
Toolbox on the development computer.

3 Ifyou intend to use computers in a remote cluster:
a On each cluster computer, install:

« MATLAB

* Parallel Computing Toolbox

* MATLAB Parallel Server

¢ Simulink Real-Time

* Simulink Real-Time Target Support Package

b Start and configure the remote cluster according to the instructions at www.mathworks.se/
support/product/DM/installation/ver current.

4 Run MATLAB on the development computer.
In MATLAB, call the parpool function to open a parallel pool on the cluster.
6 To configure the compiler for the remote workers as a group, call the pctRunOnA1l1 function.

In this configuration, the development computer and the remote workers have installed a
supported version of a C++ compiler that is compatible with the code generation target. For the
current list of supported compilers, see Supported and Compatible Compilers.

7 From the top model of the model reference hierarchy, open the Configuration Parameters dialog
box. Go to the Model Referencing pane and select the “Enable parallel model reference builds”
option. This selection enables the parameter “MATLAB worker initialization for builds”. For more
information, see “Reduce Build Time for Referenced Models by Using Parallel Builds”.

8 Build and download your model.

See Also
parpool | pctRunOnAll

https://se.mathworks.com/support/product/DM/installation/ver_current.html
https://se.mathworks.com/support/product/DM/installation/ver_current.html
https://www.mathworks.com/support/compilers.html

Reduce Build Time for Simulink Real-Time Referenced Models

More About
. “Reduce Build Time for Referenced Models by Using Parallel Builds”

9-13

Execution with MATLAB Scripts

15

Real-Time Application Objects and
Options in the MATLAB Interface

10 RealTime Application Objects and Options in the MATLAB Interface

Target and Application Objects

10-2

The Simulink Real-Time software uses a Target object to represent a target computer and an
Application object to represent a real-time application. To run and control real-time applications
on the target computer, use the object functions.

An understanding of the Target and Application object properties and functions helps you to
control and test your real-time application on the target computer.

A Target object on the development computer represents the interface to a real-time application and
the RTOS on the target computer. To run and control the real-time application, use Target objects.

When you change a Target object property on the development computer, information is exchanged
between the target computer and the real-time application.

To create a Target object for the default target computer, in the MATLAB Command Window, type:

tg = slrealtime

A Target object has properties and functions specific to that object. The real-time application object
functions enables you to control a real-time application on the target computer from the development
computer. You enter real-time application object functions in the MATLAB Command Window on the
development computer or you can use MATLAB code scripts. To access the help for these functions
from the command line, use the syntax:

doc slrealtime/function name
For example, to get help on the load function, type:

doc slrealtime/load

To get a list of all the functions for the Target object, use the methods function. For example, to get
the functions for Target object tg, type:

methods(tg)

If you want to control the real-time application from the target computer, use target computer
commands (see “Control Real-Time Application at Target Computer Command Line” on page 8-2).

Control Real-Time Application by Using Objects

To create a real-time application and control it by using Target and Application objects:
1 Open a model and build a real-time application. This example uses the slrt _ex osc model.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt _ex osc'));
rtwbuild('slrt ex osc');
2 Create Target and Application objects to represent the target computer and the real-time
application.

tg = slrealtime('TargetPCl');
app = slrealtime.Application('slrt ex osc');
3 Load the real-time application on the target computer by using the Target object.

load(tg, 'slrt ex osc');

Target and Application Objects

4 Setthe Target object stoptime property for the real-time application.

setStopTime(tg,inf);
5 Get the Application object options property values from the real-time application.

app.0Options.get("stoptime")
ans =

Inf
6 Start the real-time application by using the Target object .

start(tg);
7 Stop the real-time application by using the Target object .

stop(tg);

Use Real-Time Application Object Functions

To run Target object and Application functions, use the function name(target object,
argument list) syntax.

Unlike properties, for which partial but unambiguous names are permitted, you must enter function
names in full, in lowercase. For example, to start a real-time application on target computer tg, in the
MATLAB Command Window, type:

tg = slrealtime;
start(tg);

See Also
Application | Target

More About

. “Control Real-Time Application at Target Computer Command Line” on page 8-2

10-3

Simulink Real-Time Instrument Object

11 Ssimulink Real-Time Instrument Object

Instrumentation Apps for Real-Time Applications

11-2

To visualize the behavior of a real-time application running on a target computer, you can create
instrument panel apps. An instrument panel app is an user-interface application into which you can
insert one or more instruments. To create an instrument panel app, use App Designer or an m-script.

* When you create an instrument panel app in the App Designer Design View, you add instrument
components from the App Designer Component Library to the app. You configure each
instrument by using fields in the Component Browser. In the App Designer Code View, you add
callback code to handle component events, such as new streaming data or interaction with the
app. For more information, see “App Building Components” and “Manage Code in App Designer
Code View”.

* When you create an instrument panel app by using an m-script, you use a programmatic approach
to add each instrument to the panel as Ul component. For more information, see “Write Callbacks
for Apps Created Programmatically”.

To stream signal and parameter data to the instrument panel app from the real-time application, you
use the Instrument object. After you create an instrument object for a real-time application, you can
use instrument object functions to connect signals and parameters from the real-time application to
instrument panel app callbacks.

When identifying parameters and output signals to stream signal to the instrument panel app from
the real-time application, it can be helpful to use the hierarchical display of signals and parameters.
See Simulink Real-Time Explorer. For more information, see “Display and Filter Hierarchical
Signals and Parameters” on page 6-57.

See Also
Instrument | Simulink Real-Time Explorer

Related Examples
. “Add App Designer App to Inverted Pendulum Model” on page 13-13

More About

. “App Building Components”

. “Manage Code in App Designer Code View”

. “Display and Filter Hierarchical Signals and Parameters” on page 6-57

Automated Test with Simulink Test

12 Automated Test with Simulink Test

Test Real-Time Application

This example shows how to perform a frequency-response test of the model slrt_ex osc_sltest.

Using this information, in the design phase, you can modify the internal parameters of the model to
meet your frequency requirements. In the production phase, you can bin manufactured parts based
on frequency response.

12-2

Test Real-Time Application

SIMULINK REAL-TIME SIMULINK TEST

Configuration Parameters

STEP 1 STEP 2
Set Model Configuration Parameters Create Test Harmess
Test Assessment Block
STEP 3 STEP 4
Sat Test Hamess Configuration Parameters Configure Test Hamess

Model Advisor

STEP 5 STEP &
Configure Simulink Parameters Prepare Test Assessment Steps
Test Manager
STEPT

Initialize Test Suite

STEP 8
Initialize System Under Test

STEP 9
Initialize Parameter Overrides

STEP 10
Create Scripted Iterations

STEP 11
Fun Test and Display Kesults

Open the Model
To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex osc sltest'));

12-3

12 Automated Test with Simulink Test

Gain
e —————

Gain
oooo N - |
e e iz * Sum Integrator D

Signal Gainz — Integrator Integrator
Generator Gaint DampedOsc Cutport
Gain1 j =
SignalGenerator Scope
Ciopyright 2020 The MathWaorks, Inc. i File Log
File Log

The figure shows representative output from a real-time application running on a target computer. At
low frequencies, the output of the Integratorl block settles to the same value as the output of the

Signal Generator block. At high frequencies, the output of the Integratorl block is still ringing at the
end of each pulse.

12-4

Test Real-Time Application

) Simulation Data Inspector - untitled”

» « @O B @

@ & P

Q

In

Filter Signals

» Run

DampedOsc

L4

Archive

Properties 0

&

Compare

Lo

spect W DampedOsc W SignalGenerator

1: sirt_ex_osc_sltest @ Target... o

The test determines the highest frequency at which the output values of the Integrator and Signal
Generator blocks are within a specified criterion of each other. The test uses the model itself as a

signal source and uses a test harness to compare the outputs of the Integrator and Signal Generator
blocks.

Step 1. Set Model Configuration Parameters

Open model slrt _ex osc sltest in a writable folder.

Open the Configuration Parameters. On the Real-Time tab, click Hardware Settings.
Select Model Referencing > Total number of instances allowed per top model > One.
Select Data Import/Export > Format > Structure with time.

Select Data Import/Export > Format > Time.

Select Data Import/Export > Format > Output.

De-select Data Import/Export > Format > States.

De-select Data Import/Export > Format > Final states.

© 0 N O U1 A W N M

De-select Data Import/Export > Format > Signal logging.
10 De-select Data Import/Export > Format > Data stores.
11 De-select Data Import/Export > Format > Log Dataset data to file.

12-5

12 Automated Test with Simulink Test

Step 2. Create Test Harness

1 On the Apps tab, click Simulink Test.

On the Test tab, click Add Test Harness for Model. The software creates a test harness with
the default name slrt_ex osc sltest Harnessl.

N

In the Basic Properties pane, select the Save Test Harnesses Externally check box.
For the Input to Component under Test, select None.

For the Output from Component under Test, select Outport.

Select the Add separate assessment block check box.

Select the Open harness after creation check box.

3
4
5
6
7
8

Create Test Harness

Take the defaults in the remaining panes.

Specify the properties of the test hamess. The component under test is the system for which the harness
is being created. After creation, use the block badge to find and open harnesses.

Component under Test: slit_ex_osc_sltest

Basic Properties Advanced Properties Description

Name: |5Irt_ex_05c_5lt25t_Hame551

Save test harnesses externally More information

Harness path: |‘|’:".,[.‘H:u:ument5".,r-1ﬁ.11_ﬁ.l3"-.made|5 Browse ...

Sources and Sinks

None v ——">| Component under Test |[==="> | Qutport v

Create scalar inputs
Add scheduler for function-calls and rates: | Mone -
Enable initialize, reset, and terminate ports

Add separate Test Assessment block

Open harness after creation

‘}- Cancel Help

8. Click OK.

12-6

Test Real-Time Application

The example model slrt_ex osc_sltest stores the test harness within the model. To access the
test harness from the example model:
In Simulink Editor, on the Test tab, click Manage Test Harnesses.
Click slrt_ex osc_sltest Harnessl.
To return to the example model, select it in the perspectives view in the lower right corner of the
test harness.
Step 3. Set Test Harness Configuration Parameters

Open test harness slrt _ex osc sltest Harnessl.

Open the Configuration Parameters. On the Real-Time tab, click Hardware Settings.
Select Model Referencing > Total number of instances allowed per top model > One.
Select Data Import/Export > Format > Structure with time.

Select Data Import/Export > Format > Time.

Select Data Import/Export > Format > Qutput.

De-select Data Import/Export > Format > States.

De-select Data Import/Export > Format > Final states.

© 0 N OO U1 A W N M

De-select Data Import/Export > Format > Signal logging.
10 De-select Data Import/Export > Format > Data stores.
11 De-select Data Import/Export > Format > Log Dataset data to file.

Step 4. Configure Test Harness

Open the Test Assessment block.

To simplify the test assessment configuration, in the Input symbol list, replace input Outport
with inputs Int1 and SigGen.

3 Inslrt ex osc sltest Harnessl, connect a Demux block to slrt _ex osc sltest/
Outport.

In the Demux block dialog box, set Number of outputs to 2.

5 To make the Demux outputs visible to the Test Assessment block, connect unitary Gain blocks to
each of the Demux block outputs.

6 Connect the top Demux block output to Test Assessment/Intl and the bottom output to Test
Assessment/SigGen.

The final test harness looks like slrt ex osc sltest harnessl.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex osc sltest harnessl')

12-7

12 Automated Test with Simulink Test

12-8

Outport 3 : 1
I :1 3

Test Assessment Block

¥
¥,

elrt_ex_osc slest

Outport f———

Signal spec.
and routing

Step 5. Configure Simulink Parameters
1 Open the Model Explorer. On the Modeling tab, pull down the Design section and click Model
Explorer.
Click node slrt_ex_osc_sltest_Harness1 > Model Workspace.
In the toolbar, click the Add Simulink Parameter button.
Add the following data object:

* Name — Criterion

* Value—0

* DataType — double

* Storage Class — ExportedGlobal

5. In a similar manner, add Simulink parameters w_open and w_close. Because these parameters are

inthe slrt_ex osc_sltest Harnessl model workspace as model parameters, you access them by
name directly, without model hierarchy.

Test Real-Time Application

B Model Explorer

File Edit WView Tools Add Help
EO4ECR EHE-E-H- i
Model Hierarchy E E Contents of: ...el Workspace (and below) Filter Contents Simulink.Parameter: w_open
v »i Simulink Root _ i } = Design Code Generation ~
Column View: | Default | Show Details 3 object(s) ‘lf
E Base Workspace Value: |0
slrt_ex_osc_sltest
hd slrt_ex_osc_sltest_harness1 [",‘.’",] Criterion 0 Data type: |dnuble V| =5
] Configurations BT;] w_close] Dimensions: | [1 1] i complexity: | rea
% Model Workspace BT;] w_open 0
Ja External Data Minimum: £ Maximum: [1
@ Model (slrt_ex_osc_sltest) Unit: |
Output Conversion Subsystem
¢ Test Assessment Block [Argument
Description:
v
£ >
£ >
Revert Help Apply
< > Contents Search Results

6. Save the model.
Step 6. Prepare Test Assessment Steps

1. Open the Test Assessment block

N

. Add these parameters to the Parameter symbol list:

Criterion
* W _open

w_close
3. To add a step, in the Step column, move the cursor to the top row, click Add step after, and type:
CheckSetting
4. Right-click step CheckSetting and set the When decomposition check box.
5. To add a substep to CheckSetting, click Add sub-step, and type:
Hi when (SigGen > 0)
The when expression selects one half of the waveform.
6. Right-click substep Hi when and set the When decompeosition check box.

7. To substep Hi when, add substep:
HiCheck when ((et >= w open) && (et <= w close))
verify((abs(Intl) >= abs(SigGen) * (1.0 - Criterion)) && ...
(abs(Intl) <= abs(SigGen) * (1.0 + Criterion)));

The when expression selects the time window for testing the acceptance criterion. The verify
command tests the acceptance criterion.

12-9

12 Automated Test with Simulink Test

8. In a similar manner, to step CheckSetting, add substep:
Lo when (SigGen < 0)
9. To substep Lo when, add substep:
LoCheck when ((et >= w_open) && (et <= w _close))
verify((abs(Intl) >= abs(SigGen) * (1.0 - Criterion)) && ...
(abs(Intl) <= abs(SigGen) * (1.0 + Criterion)));
10. Right-click substep Lo when and set the When decomposition check box.

11. To satisfy the requirements of When decomposition, remove the default Run step and insert
DefaultStep substeps after steps CheckSetting, Hi when, and Lo when. When decomposition
requires at least two steps at each level of nesting, and one nondecomposed step at the end of each
list of steps.

Step Transition Next Step Description
B CheckSetting

B Hi when (SigGen = 0) Selects half
of waveform
HiCheck when ((et >=w_open) && (et <= w_close)) Selects time window
verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && .. Tests acceptance
(abs(Int1) <= abs(SigGen) * (1.0 + Criterion))); criterion
DefaultStep 1 Required for

‘when decomposition’

=™ Lo when (SigGen < 0)

LoCheck when ((et >= w_open) && (et <= w_close))
verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ..
(abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

DefaultStep 2

DefaultStep

Step 7. Initialize Test Suite

Click on the slrt _ex osc sltest subsystem.

On the Apps tab, click Simulink Test.

On the Test tab, click Test Manager.

Select New > Test File.

Name the test file realtimetest.

Right-click the test file and select New > Real-Time Test.

In the new real-time test dialog box, enter Simulation in the Test Type field.

N OO o1 A W N MR

12-10

Test Real-Time Application

8
9

Click Create.
Rename the new test suite to realtimesuite.

10 Rename the new test case to frequencysweep.

Step 8. Initialize System Under Test

00 N O U A W N M

In Test Manager, select node frequencysweep.

Select tab System Under Test.

Set Load Application From to Model.

Set Model to slrt_ex osc sltest.

Set Target Computer to TargetPC1.

In tab Test Harness, set Harness to slrt_ex osc_sltest Harnessl.
In tab Simulation Settings Overrides, select the Stop Time check box.
Take the defaults for the other fields.

Step 9. Initialize Parameter Overrides

In Test Manager, select tab Parameter Overrides.

Click the Add button. A dialog box opens containing a list of parameters. If parameters are not
visible, click the Refresh line at the top of the dialog box. The refresh builds the model and
uploads the model and block parameters from slrt_ex osc sltest Harnessl and

slrt _ex osc sltest.

Open Parameter Set 1 and select the Criterion, Frequency, w_close, and w_open check
boxes. Leave the other check boxes cleared.

Step 10. Create Scripted Iterations

To configure and control iterated runs of the test harness, a number of constants and variables
provide input.

Test harness constants include:

cStartFreq = 15.0 Start frequency of parameter sweep.
cStopFreq = 25.0 End frequency of parameter sweep.
cFreqIncr = 1.0 Frequency increment.

cWOpen = 0.90 Start of time window for evaluating criterion.
cWClose = 0.99 End of time window for evaluating criterion.

cCriterion = 0.025 Maximum normalized amplitude difference between Signal Generator and
Integratorl within the time window.

Test harness variables include:

N =

vfreq Frequency at each iteration.
vw_open Window opens once in each half-period.
vw_close Window closes once in each half-period.

In Test Manager, select tab Iterations > Scripted Iterations.

In the text box, enter the following code. To resize the Scripted Iterations text box, click and
drag the lower-right corner of the box.

12-11

12 Automated Test with Simulink Test

% Initialize constants
cStartFreq = 15.0;
cStopFreq 25.0;
cFreqIncr 1.0;
cWOpen = 0.90;

cWClose = 0.99;
cCriterion = 0.025;

% Loop through test frequencies
for vfreq = cStartFreq:cFreqIncr:cStopFreq

% Create a new iteration
testItr = sltest.testmanager.TestIteration();

% Calculate the time window

half period = 0.5 * (1.0/vfreq);
vw_open = half period * cWOpen;
vw_close = half period * cWClose;

% Set the parameters for the iteration
testItr.setVariable('Name', 'Frequency', 'Source’, .

'slrt_ex osc_sltest/Signal Generator', 'Value',vfreq);
testItr.setVariable('Name','w open', 'Source’,

"', 'Value', vw open);
testItr.setVariable('Name','w close', 'Source',

"', '"Value', vw close);
testItr.setVariable('Name', 'Criterion', 'Source',

"', 'Value', cCriterion);

% Name and add the iteration to the testcase

str = sprintf('%.0f Hz', vfreq);

addIteration(sltest testCase, testItr, str);
end

Step 11. Run Test

1 Build and download slrt ex osc sltest to the target computer.
In Test Manager, click the Run button.

3 To view test results, in the left column, click Results and Artifacts. In this case, the test failed
at iteration 23 Hz.

4 To view the failing results, open nodes 23 Hz > Verify Statements and 23 Hz > Sim Output
(slrt_ex_osc_sltest).

Step 12. Display Results

1 In the Simulation Data Inspector pane, select the Layout button.
Select two horizontal displays.

3 In the Simulation Data Inspector top display, select the two Out check boxes and the top Test
Assessment check box. This assessment corresponds to the HiCheck substep.

4 In the bottom display, select the two Out check boxes and the bottom Test Assessment check
box. This assessment corresponds to the LoCheck substep.

5 Click the Zoom in Time button and select the range 4.00-4.1.

12-12

Test Real-Time Application

In the top display, the vertical red line near 4. 04 followed by a horizontal green line shows that the
HiCheck test failed briefly before succeeding. In the bottom display, the vertical red spike near 4.02
followed by a horizontal green line shows that the LoCheck test failed briefly before succeeding.

See Also
Test Assessment | Test Sequence

More About
. “Test Models in Real Time” (Simulink Test)
. “Reuse Desktop Test Cases for Real-Time Testing” (Simulink Test)

12-13

Examples

15

Simulink Real-Time Examples

13 simulink Real-Time Examples

Parameter Tuning and Data Logging

13-2

This example shows how to use real-time parameter tuning and data logging with Simulink® Real-
Time™. After the example builds the model and downloads the real-time application,

slrt _ex param_tuning, to the target computer, the example executes multiple runs with the gain
'Gain1/Gain' changed (tuned) before each run. The gain sweeps from 0.1 to 0.7 in steps of 0.05.

The example uses the data logging capabilities of Simulink Real-Time to capture signals of interest
during each run. The logged signals are uploaded to the development computer and plotted. A 3-D
plot of the oscillator output versus time versus gain is displayed.

Open, Build, and Download Model to the Target Computer

Open the model, slrt_ex param_tuning. The model configuration parameters select the
slrealtime. tlc system target file as the code generation target. Building the model creates a real-
time application, slrt _ex param tuning.mldatx, that runs on the target computer.

model = 'slrt ex param tuning';
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, "examples',model));

G
noon P -

’)
» File Log

Simulink Real-Time example model

Copyright 2020 The MathWorks, Inc.

Build the model and download the real-time application, slrt _ex param tuning.mldatx, to the
target computer.

* Configure for a non-Verbose build.

* Build and download application.

set param(model, 'RTWVerbose', 'off");
set param(model, 'StopTime','0.2");
rtwbuild(model);

tg = slrealtime;
load(tg,model);

Successful completion of build procedure for: slrt _ex param tuning
Created MLDATX ..\slrt ex param tuning.mldatx

Build Summary

Parameter Tuning and Data Logging

Top model targets built:

Model Action Rebuild Reason

slrt_ex param_tuning Code generated and compiled Code generation information file does not exi:

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 28.55s

Run Model, Sweep 'Gain' Parameter, Plot Logged Data
This code accomplishes several tasks.
Task 1: Create Target Object

Create the MATLAB® variable, tg, that contains the Simulink Real-Time target object. This object
lets you communicate with and control the target computer.

* Create a Simulink Real-Time target object.

* Set stop time to 0.2s.

Task 2: Run the Model and Plot Results

Run the model, sweeping through and changing the gain (damping parameter) before each run. Plot
the results for each run.

» Ifno plot figure exist, create the figure.

+ If the plot figure exist, make it the current figure.

Task 3: Loop over damping factor z

* Set damping factor (Gain1/Gain).

» Start run of the real-time application.

» Store output data in outp, y, and t variables.
* Plot data for current run.

Task 4: Create 3-D Plot (Oscillator Output vs. Time vs. Gain)

* Loop over damping factor.

* Create a plot of oscillator output versus time versus gain.
* Create 3-D plot.

figh = findobj('Name', 'parsweepdemo');

if isempty(figh)
figh = figure;

set(figh, 'Name', 'parsweepdemo', 'NumberTitle', 'off');
else

figure(figh);
end

y = [1; flag = o;
for z=0.1: 0.05 : 0.7
if isempty(find(get(0, 'Children') == figh, 1))
flag = 1;
break;

13-3

13 simulink Real-Time Examples

13-4

end

load(tg,model);

tg.setparam([model '/Gainl'],'Gain',2 * 1000 * z);
tg.start('AutoImportFileLog',true, 'ExportToBaseWorkspace', true);
pause(0.4);

outp = logsOut.FileLogSignals{1l}.Values;
y = [y,outp.Data(:,1)];
t = outp.Time;
plot(t,y);
set(gca, 'XLim', [t(1), t(end)]l, 'YLim', [-10, 10]);
title(['parsweepdemo: Damping Gain = ', num2str(z)]);
xlabel('Time"); ylabel('Output');
drawnow;
end
if ~flag
delete(gca);

surf(t(l : 200), 0.1 : 0.05 : 0.7, y(1 : 200, :)');

colormap cool

shading interp

h = light;

set(h, 'Position', [0.0125, 0.6, 10], 'Style', 'local');

lighting gouraud

title('parsweepdemo: finished');

xlabel('Time"'); ylabel('Damping Gain'); zlabel('Output');
end

parsweepdemo: finished

10 ~

Output
3

0.04
0.2 0.02

.) 0.01
Damping Gain 0 0 Time

Parameter Tuning and Data Logging

Close Model

When done, close the model.

close system(model,0);

13-5

13 simulink Real-Time Examples

Concurrent Execution on Simulink® Real-Time™

This example shows how to apply explicit partitioning to enhance concurrent execution of a real-time
application that you generate by using Simulink Real-Time.

Simulink Real-Time supports concurrent execution by using implicit partitioning or explicit
partitioning of models. This example shows the relationship between the explicit partitioning of the
tasks in the model subsystems and the execution of tasks by using the Simulink Real-Time profiling
tool.

The example model slrt_ex mds and tasks runs at sample rate of 0.001 second.

To run the model with adjusted sample rate of 0.01 second, change the sample rated before running
the example. In the MATLAB Command Window, type:

Ts = 0.01;
Open, Build, and Download the Model

The explicit partitioning in the top-level model occurs in subsystem1.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', '"examples', 'slrt ex mds subsysteml'));

Br—__+—o—{ Po
unity math max Ermor
» | H__,___.- g —h-}é}—b —» 2]

]
=]
¥

|
|

unity mathi max Errors

l

Caopyright 2020 The MathWorks, Inc.

13-6

Concurrent Execution on Simulink® Real-Time™

The explicit partitioning in the top-level model occurs in subsystem?.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex mds subsystem2'));

)
“©

¥

SN

unity math max Ermor

(1) #Eﬁﬁm/ > 1—r©—> L »(2)
umity math1 max Errori
—h‘.-;-d__...r P 1 —HE-;)—D —h-"'TJ

inity math2 | max Errord

Copyright 2020 The MathWorks, Inc.
Open the model slrt_ex mds and tasks. The model is mapped to seven threads: Modell R1,
Modell R2, Modell R3, Modell R4, Model2 R1, Model2 R3, and Model2 R4.

These threads run at sample rates of Ts, 2*Ts, 3*Ts, 4*Ts, Ts, 3*Ts, and 4*Ts.

mdl="'slrt ex mds and tasks';
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples',mdl));

13-7

13 Ssimulink Real-Time Examples

Concurrent Execution on Simulink Real-Time
lllustrated by Profiling Tool

ol ol
r slrt_ex_mds_subsystem1 Y il
Cut] p—————=—] F slrt_ex_mds_subsystem2 Y
Out! f———m—]
out2 ———*—
I Out? f——w—]
Cutd f———+—
Cutd ——#—]
h A
Crutd
A A

Copyright 2020 The MathWaorks, Inc.

To apply explicit partitioning, in the Simulink Editor, on the Real-Time tab, click Hardware
Settings, and then select Solver > Configure Tasks. Select the Tasks and Mapping node.

13-8

Concurrent Execution on Simulink® Real-Time™

Concurrent Execution: slt_ex_mds_and_tasks (Active) — O *
Ld & &
Select: Map blocks to tasks
“ Concurrent Execution

E Data Transfer Refresh mapping table (*invokes update diagram)

b E Tasks and Mapping
v [C] cru
5 . Perindic ame TriggerType | Period | Autogenerated

¥ Block: Modell
° System tasks oc =

@ profie report Bl FeriodicModelt_R1 Periodic Ts Mo

. Periodic:Modell_R2 Periodic 2*Ts No

. Pericdic:Modell_R3 Periodic 3*Ts No

. Periodic:Modell_R4 Periodic 4*Ts No
% Block: Model2

. Periodic:Model2_R1 Periodic Ts No

. Periodic:Model2_R3 Periodic 3*Ts No

i Periodic:Model2_R4 Periodic 4*Ts No

Build, download, and run the model.

set param(mdl, 'RTWVerbose', 'off');
rtwbuild(mdl);

tg = slrealtime;

load(tg,mdl);

% Open TET Monitor

slrtTETMonitor;

% Start profiler on the target computer
startProfiler(tg);

start(tg);

pause(2);

stop(tg);

Starting serial model reference simulation build

Starting serial model reference code generation build

Successful completion of build procedure for: slrt ex mds subsysteml

Successful completion of build procedure for: slrt ex mds subsystem2

Successful completion of build procedure for: slrt ex mds and tasks

Unable to find symbol(s) 'slrt _ex mds and tasks DW.Modell InstanceData.rtb.RateTransition Bufo@, :
Created MLDATX ..\slrt ex mds and tasks.mldatx

Build Summary

13-9

13 simulink Real-Time Examples

13-10

Code generation targets built:

Model Action Rebuild Reason

slrt_ex mds subsysteml Code generated and compiled slrt ex mds subsysteml.cpp does not exist.
slrt_ex mds subsystem2 Code generated and compiled slrt ex mds subsystem2.cpp does not exist.

Top model targets built:

Model Action Rebuild Reason

slrt_ex mds and tasks Code generated and compiled Code generation information file does not ex

3 of 3 models built (0@ models already up to date)
Build duration: Oh 1m 22.867s

Display Profiling Data
The profiling data shows the execution time of each thread on a multi-core target computer.

profData = tg.getProfilerData;
profData.plot;

Processing data on target computer ...
Transferring data from target computer ...
Processing data on host computer ...

Concurrent Execution on Simulink® Real-Time™

[Execution Profile o || = | = |
File Edit View Insert Tools Desktop Window Help o
Ddde | @ 0 kE
Estimated Execution Time-line
del2_R4[0.004 0] [7]
3
del1_R4[0.004 0] & 6
g 4
del2_R3{0.003 0] 5 5
f 2
del1_R3(0.003 0] 4 [4
3
del1_R2[0.002 0] 3 3 3
B 3 3
del2_R1[0.001 0] 2 2 2 2 2
1 1 1 1 1
del1_R1[0.001 0] 1 1 1 1 1
% 2 2 2 2
0 0.5 1 1.5 2 2.0 3 3.5 4
Time in seconds w1072
Start: o Range: 00040125 |

13-11

13 simulink Real-Time Examples

View model's TET information on TET monitor

EI Simulink Real-Time TET Monitor

+ myPC

‘I Model1_R1 (0.001s)
Model2_R1 (0.001s)
Model1_R2 (0.002s)
Model1_R3 (0.003s)

Model2_R3 (0.003s)

4 =2 = =

Model1_R4 (0.004s)

ﬂ Model2_R4 (0.004s)

25% 50% 5% 100%

Close the Model
bdclose('all');

13-12

Add App Designer App to Inverted Pendulum Model

Add App Designer App to Inverted Pendulum Model

This example shows how to stream signal signals to an App Designer instrument panel app from a
Simulink Real-Time application. The example builds the real-time application from the model
slrt ex pendulum 100Hz. The instrument panel contains these App Designer components:

* Drop down window — To show all the available target computers.

* Connect/disconnect button — To connect or disconnect the target computer chosen in the drop
down window.

* Load button — To load the application to the target computer.
» Start/stop button — To start or stop the application on the target computer.

» Stop time edit field — To display and set the stop time of the application loaded on the target
computer.

* Axes — To display an animation for the two inverted pendulum and cart system.

* Axes — To display signal output for responses to disrupting the pendulum.

* Nudge button — To apply input (nudge) to the cart that hold the pendulum.

» Reference position spinner — To change the reference position of the pendulum and cart system.

* Reference variation pattern knob — To add a variation pattern to the reference position of the
pendulum and cart system.

* Amplitude slider — To adjust the amplitude of the chosen reference variation pattern.
» Frequency slider — To modify the frequency of the chosen reference variation pattern.

To stream signal and parameter data between the real-time application and the instrument panel app,
the app uses the instrumentation object.

load system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples','slrt ex pendulum 100Hz'));
Start Target Computer and Build Real-Time Application

These tasks generate the real-time application that streams data to the App Designer instrument
panel app.

1 Start the target computer.

2 Openthe model slrt_ex pendulum 100Hz.

3 Connect the development computer to the target computer. Build the
slrt _ex pendulum 100Hz model.

4 Deploy the real-time application to the target computer.

In the MATLAB Command Window, type:

set param('slrt ex pendulum 100Hz', 'RTWVerbose', 'off');
tg = slrealtime;

rtwbuild('slrt ex pendulum 100Hz');

load(tg, 'slrt ex pendulum 100Hz');

Generated code for 'slrt ex pendulum 100Hz' is up to date because no structural, parameter o
Successful completion of build procedure for: slrt _ex pendulum 100Hz
Created MLDATX ..\slrt ex pendulum 100Hz.mldatx

Build Summary

13-13

13 simulink Real-Time Examples

13-14

0 of 1 models built (1 models already up to date)
Build duration: Oh Om 3.951s

Run App Designer Instrument Panel App

The App Designer instrument panel app slrt_ex pendulumApp provides controls to start and
interact with the real-time application slrt_ex pendulum_ 100Hz.

1. Run the app. To start the App Designer app slrt_ex pendulumApp.mlapp and create the handle
app, in the MATLAB Command Window, type:

openExample('SlrtAddAppDesignerAppToInvertedPendulumModelExample');
app = slrt_ex_pendulumApp;

2. To connect with an available target computer, click the connect button. The text on the button will
switch to 'disconnect' and the load button will be enabled.

3. To load the application to the target computer, click the load button. After the application is loaded
on the target computer, the start button and stop time edit field will be enabled.

4. To set the stop time of the application, type your preferred stop time in the edit field and hit enter
button.

5. To start running the application, click the start button.

6. To disrupt the equilibrium of the pendulum on each cart, click the Nudge button. You can adjust
the nudge magnitude by using the value selection next to the button, hange the reference position by
adjusting the value of reference position spinner, or choose a variation pattern for the reference
position.

Add App Designer App to Inverted Pendulum Model

4 MATLAB App - O X
Stop Time
TargetPC1 v 5= Connect
: Pendulum Line Plot Animation
[cart
I Fendulum
0l [Referencs
06
D47
021

0.2 0.4 0.6 0.8 1 5

Time
Amplitude
e
Reference Variation Pattern Fraquency (rad/s)

App Callback Code
The instrument panel app functionality is provided by callback code.

Comments in the callback code in the instrument panel app slrt_ex pendulumApp.mlapp describe
the callback operations and programming suggestions. To view the callback code, open
slrt_ex_pendulumApp.mlapp in the App Designer, and then click the Code View tab. In the
Command Window, type:

edit slrt _ex pendulumApp
Specify Block Paths for Signals in Referenced Models

To stream data from signals in the model, see the use of connectLine functions in the
setupInstrumentation(app) function in the app.

updateAnimationCallback Function

For each AcquireGroup, this function checks whether there is fresh data since the last time the
callback was called. If there is data, the function updates the animation objects.

Update Axes and Animation by Using Acquire Groups

13-15

13 simulink Real-Time Examples

In the callback code, this processing is visible as AcquireGroupData signal groups in the
updateAnimationCallback function.

Close the App and Models
The instrument panel app handle app provides access to close the app.

Close the app. In the MATLAB Command Window, type:

close(app.UIFigure)

Close the open models. In the Command Window, type:

bdclose ('all');

13-16

Connect Triggered Subsystem by Using Thread Trigger

Connect Triggered Subsystem by Using Thread Trigger

This example shows how to connect the Thread Trigger block and create a triggered subsystem. This
not-often-used approach lets you use conditions in the model to trigger tasks instead of by using the

much more typical approach of using a hardware interrupt from an I/O device in the target computer
to trigger tasks.

To open this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', '"examples', 'slrt ex thread trigger fc sub:

| double -"-‘I C]
it - Function Call
1111 [boolean T Thread Trigger
t1 Thread E

r

funection(}
Function Call 1 —]
1111 W boolean Thread Trigger F .

Func 1

—

t3 Thread

M r

J ! function()]

hulll v = (|

=1 > —
[[

["'1 Func 2 RT
A,

See Also

* Thread Trigger

* Function-Call Subsystem

» Triggered Subsystem

* “About RTOS Tasks and Priorities”
+ “Execution Modes” on page 7-2

13-17

13 simulink Real-Time Examples

EtherCAT® Communication with Beckhoff® Analog 10 Slave
Devices EL3062 and EL4002

This example shows how to communicate with EtherCAT devices using the Beckhoff® analog I/O
terminals EL3062 and EL4002.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Master device and two analog input/output terminals EL.3062 and EL4002 as EtherCAT Slave devices.
This example requires a dedicated network port that is reserved for EtherCAT using the Ethernet
Configuration tool on the target computer. Use the reserved port for EtherCAT communication. This
port is in addition to the port used for the Ethernet link between the development and target

computers.

EtherCAT In OO
L | o s
== —
= | W 0@

AT

To RPS +Ve .u

To RPS -Ve EE mE

66 A8

. W EE
B

NOBLA L p &l

= HE am

S mmm= ==
Egibb (a]a) %ﬂ

5E
;:

-
“:I

o E

]

To test this model:

1 Connect the reserved network port in the target computer to the network IN port of the
Beckoff® EK1100 coupler.
Assemble Terminals EL3062 and EL4002 with Coupler EK1100.

Loop back the I/O ports: Connect each output port of Terminal EL4002 to a corresponding input
port of Terminal EL3062.

Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model creates two sine wave signals and sends the signals to the EL4002 terminal. The model
receives input signal values from the EL3062 terminal.

13-18

EtherCAT® Communication with Beckhoff® Analog |0 Slave Devices EL3062 and EL4002

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples', 'slrt _ex ethercat beckhoff aio

EtherCAT Init - » D
Metwork Device 0 Status v
el A g o TEm 3 (EL4002).A0 Cutputs Channel 1_Analog output
'A'U = COnvern CHI_EL2032_Tx w D MNetwork Device O

d)
B
Term 2 (EL23062).Al Standard Channel 1.Value - ..__J v
MNatwork Device 0 ~ [CH1_EL3102_R=x v
- P g o Term 3 (EL4002). A0 Cutputs Channel 2_Analog output
AU v convert CH2_EL4032_Tx ™D Metwork Device 0

[

Yy
h J

Term 2 (EL3062).Al Standard Channel 2.Vvalue
Matwork Device 0 - CHZ_EL3102_Rx L

Figure 1: EtherCAT model using Beckhoff® analog I/O slave devices EL3062 and EL4002.
Configure the Model

Open the mask for the EtherCAT Init block and observe the pre-configured values. The EtherCAT
slave devices that are daisy chained together with Ethernet cable is a Device, also referred to as an
EtherCAT network. The Device Index selects one such chained EtherCAT network. The Ethernet Port
Number identifies which Ethernet port to use to access that Device. The EtherCAT Init block connects
these two so that other EtherCAT blocks use the Device Index to communicate with the slave devices
on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI file for different A/D D/A slave devices, if needed

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is BeckhoffAIOconfig.xml.

The ENI (EtherCAT Network Information) file that is provided with this example has an EK1100 with
EL3062 and EL4002 slaves attached, in that order. If you have different analog IO modules, you need
to create a new ENI file for that collection.

13-19

13 Ssimulink Real-Time Examples

13-20

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup for which it has
been created (for example, the network discovered in step 1 of the configuration file creation
process). The configuration file provided for this example is valid if and only if the EtherCAT network
consists of terminals EK1100, EL3062, and EL4002.

The ENI file defines a set of transmit and receive variables. For this example, a set of receive
variables are defined for each input channel of terminal EL.3062. Make sure the variables for channel
1 and channel 2 of terminal EL3102 are selected respectively in the two EtherCAT PDO Receive
blocks. These two variables are Term 2 (EL3062).AI Standard Channel 1.Value and Term 2
(EL3062) .AI Standard Channel 2.Value.

A set of transmit variables are defined for the two output channels of terminal EL4002. Make sure the
variables for channel 1 and channel 2 of terminal EL4002 are selected in the two EtherCAT PDO
Transmit blocks. These two variables are Term 3 (EL4002).A0 Outputs Channel 1.Analog
OQutput and Term 3 (EL4002).A0 Outputs Channel 2.Analog Output.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the three host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed there.

Zooming into the first quarter second of execution for this model, on all three of the scopes shows:

Scope shows the notifications in yellow and the state in blue. The only notificatons have the value of 1
which has meaning that the state has changed. Each of those is aligned with a step in the state
output. Because this ENI file does not use distributed clock synchronization, the progression to Op
state is very fast, just over 0.1 second. Also, because this ENI file does not use distributed clocks, the
last 4 elements of the vector out of the init block are all 0.

EtherCAT® Communication with Beckhoff® Analog 10 Slave Devices EL3062 and EL4002

Scopel shows the 1Hz sinewave output in yellow and the value read back by the A/D in blue. Notice
that there is no input until the EtherCAT state has progressed to Op state just after .1 seconds. If you
zoom in tighter, you notice that the A/D signal is delayed by several clock cycles from the D/A output.
This is because the A/D is read before the D/A is commanded to a new value and the A/D value is not
available until the next sample time. This D/A slave takes a signed int as input, but can only output in
the range of [0,4+10] volts so the input values only show positive values, even though this A/D can
read inputs from [-10,+10].

Scope?2 shows the 2Hz sinewave sent to the second D/A channel, with the same delayed start on input
and delayed response to a change.

The second way is to build the model (rtwbuild() or ~B), download from the MATLAB command line
and run from the command line. In that case, the scope blocks do not display data, but the Simulation
Data Inspector can be used.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, use the
MODELING tab on the model editor toolstrip to change the Stop Time and rebuild.

Display the Target Computer data

After running the model, you can also use the Simulation Data Inspector to view any signal that has
been marked for signal logging. Signals marked for signal logging have a dot with two arcs above it
in the model editor.

Stop and Close the Model

When the example completes its run, stop and close the model.

close system('slrt ex ethercat beckhoff aio');

13-21

13 simulink Real-Time Examples

See Also

* “EtherCAT® Communication with Beckhoff® Digital 10 Slave Devices EL1004 and EL2004” on
page 13-23

* “Modeling EtherCAT Networks”

* “Configure EtherCAT Network by Using TwinCAT 3”

13-22

EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

EtherCAT® Communication with Beckhoff® Digital 10 Slave
Devices EL1004 and EL2004

This example shows how to communicate with EtherCAT devices using the Beckhoff digital I/O
terminals EL1004 and EL2004.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Master device and two analog input/output terminals EL.1004 and EL2004 as EtherCAT Slave devices
attached to an EK1100 coupler.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

EtherCAT In

Ether€AT ™

To RPS +Ve
To RPS -Ve

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the network IN port of
the Beckoff® EK1100 coupler.
Assemble Terminals EL.1004 and EL2004 with Coupler EK1100.

Loop back the first two I/O ports: Connect ports numbered O1 and O2 of Terminal EL2004 to
ports numbered I1 and 12 of Terminal EL.1004. Ports O3, 04, 13 and 14 are not used by this
example.

Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node

model, and builds then runs the real-time application, see the Simulink Real-Time EtherCAT
documentation.

13-23

13 simulink Real-Time Examples

Open the Model

This model drives a pulse wave signal and transmits the signal and its inverse as Boolean values to
the EL2004 terminal, and receives the input signal transmitted by the EL1004 terminal.

The EtherCAT initialization block can be configured with either the full path to the ENI file or with a
relative path that can be found with the MATLAB which command. Copy the example configuration
file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', "examples', 'slrt ex ethercat beckhoff dio

EtherCAT Init - B |
Natwork Device 0 >atUs o
EtherCAT Init
—>{ couve w11 b— O
Term 3 (EL1004).Channel 1.Input - B! doutie =
Metwork Device O "l cHi_EL1o04 Bx L -
T Y r— p|p Term 2 (EL2004) Channel 1 Output
RERTS - CH1_EL2004_Tx r Network Device 0
EtherCAT PDO Transmit
MO s Term 2 (EL2004).Channel 2.Output
© dHz2_EL2004 T« " MNetwork Device 0

EtherCAT PDO Transmit 1
souvie | u+1.1 —]
Term 3 (EL10:04). Channel 2.Input | double -
Metwork Device 0 ~ CHZ EL1004 Rx L "

Figure 1: EtherCAT model using Beckhoff® digital I/O terminals EL1004 and EL2004.

h 4

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

13-24

EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

Describe Network with Configurator

Using a third-party EtherCAT configuration program that you install on a development computer,
generate an EtherCAT configuration (ENI) file. The ENI file for this example is
BeckhoffDIOconfig.xml.

The ENI (EtherCAT Network Information) file that is provided with this example has an EK1100 with
EL2004 and EL1004 slaves attached, in that order. If you have different digital IO modules, you need
to create a new ENI file for that collection.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation process). The
configuration file provided for this example is valid if and only if the EtherCAT network consists of
Terminals EK1100, EL1004, and EL2004 from Beckhoff®.

The ENI file defines a set of transmit and receive variables. For this example, four receive variables
are defined for the four input channels of Terminal EL1004. Only the first two channels of Terminal
EL1004 are used in this example. Make sure the receive variables for channel 1 and channel 2 of
terminal EL1004 are selected respectively in the two EtherCAT PDO Receive blocks. These two
variables are Term 3 (EL1004).Channel 1.Inputand Term 3 (EL1004).Channel 2.Input.
In the same way, four transmit variables are defined for the four output channels of terminal EL2004,
but only the first two channels are tested in this example. Make sure the transmit variables for
channel 1 and channel 2 of terminal EL2004 are selected respectively in the two EtherCAT PDO
Transmit blocks. These two variables are Term 2 (EL2004).Channel 1.0utputand Term 2
(EL2004) .Channel 2.0utput.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the three host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed.

The three scopes are Scope, Scopel and Scope2.

Both notifications from the EtherCAT state machine and the current state are displayed in Scope.
Since there are no errors, the only notifications visible are the value 1 which means a state change at

13-25

13 simulink Real-Time Examples

13-26

that execution time step. The current state indicates the state that resulted from that state change.
Notice that Op (=8) state is reached very fast since this ENI file does not include distributed clock
synchronization. This view is zoomed in to the first 0.2 seconds of execution to show the transition to
Op state clearly.

4 Scopel - o x

Eile Tools View Simulation Help

0-08|%-[O|8- Fa-

Scopel and Scope2 show almost the same thing, but for two different channels. The signal is inverted
between the two of them as can be seen if you compare the time when there is a rising edge in the
yellow trace. The time step when physical 10 starts is when the state goes to Op state. Before that,
there is no input or output and the blue traces stay at 0. There is a time delay between the signal
being sent to the output blocks and the signal that comes back from the input blocks for two reasons.

There is a 2 time step delay due to EtherCAT communication which is followed by an additional delay
due to the speed of the hardware I0. The return signal shows a definite asymmetry between the delay
after sending a rising edge and the delay after sending a falling edge. If you inspect the actual output
signal with an oscilloscope, you see that the output is actually symmetric, but it is the input that has
additional hardware delay in it. Other DIO slaves show different delay characteristics.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer data

After running the model, you can use the Simulation Data Inspector to view any signal that has been
marked for signal logging. Signals marked for signal logging have a dot with two arcs above it in the
model editor.

Observations to notice

Because data is both received from and sent to the slaves as the final action during execution and
received data on one time step is only available during the following time step, you should see a delay

EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004

between the data being sent and the return value. In addition with digital IO, writing a new value to
an output takes a few microseconds to appear as a change in voltage which is after the input was
captured, there is a 2 time step delay from an output edge until the input shows the edge in the data.

Close the Model

When the example completes its run, stop and close the model.
close system('slrt ex ethercat beckhoff dio');

See Also

* “EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and EL4002” on
page 13-18

* “Modeling EtherCAT Networks”

* “Configure EtherCAT Network by Using TwinCAT 3”

13-27

13 simulink Real-Time Examples

EtherCAT® Communication - Motor Velocity Control with
Accelnet™ Drive

This example shows how to control the velocity of a motor by using EtherCAT communication. The
example motor drive is from Copley Instruments. This drive uses the CIA-402 (Can In Automation
402) device profile common to many drives. The example can work with other CIA-402 EtherCAT
drives if you generate an appropriate ENI file.

Requirements

This example is preconfigured to use an EtherCAT network that consists of the target computer as
EtherCAT Master device and an Accelnet™ AEP 180-18 drive from Copley Controls as EtherCAT Slave
device. Connect a supported brushless or brush motor to the drive. An example motor that works
with this example is the SM231BE-NFLN from PARKER.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the dedicated network port in the target computer to the EtherCAT IN port of the
Accelnet™ drive.
Connect a motor to the Accelnet™ drive.
Make sure that the Accelnet™ drive is supplied with a 24-volt power supply.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “EtherCAT® Communication - Sequenced
Writing Slave CoE Configuration Variables” on page 13-57.

Open the Model
This model sends a varying velocity command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex ethercatVelocityContr«

13-28

https://www.copleycontrols.com/en/support/
https://www.parkermotion.com/

EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive

b

EtherCAT Init

Metwork Device 0 Status
Master Shift DC

EtherCAT Init

h

u >

DC timing ermor

D

Drive 1 {AEP).Receive PDO _1 Modes of operation Set made of operatian o Drive 1 (AEF}.Receive F'I:_)O 1.Control word Sat control word
Metwork Device: 0 N Metwork Device 0
to velocity control to enabled

EtherCAT PDC Transmit 1 EtherCAT PDOC Transmit

Drive 1 (AEP).Transmit PDIO 1.5tatus word - Status ul
Metwork Device 0 - v

Drive 1 (AEP). Transmit PDO 1_Actual motor position

[=]

! R e—
Metwork Device 0 Actual Position |§|

¥

Drive 1 (AEP). Transmit PDO 2. Actual motor velocity N -
Metwork Device 0 = ‘Actual Velocity v |§|

Get an amplitude from the slider

ggs_gﬁ____——— intaz » 0 Dirive 1 {AEP).Receive PDO 1.Target velocity
Commanded WVelocity Metwork Device 0
Gain:Gain EtherCAT PDO Transmit 2

(RN RN R R R R A NN RN R Y|
a 100 200 300 400 H00 600 TOO BOO 900 1000

Figure 1: EtherCAT model for motor velocity control.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI file for a Different CIA-402 Drive

If you need to create a new ENI file, you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is CopleyMotorVelocityConfig.xml.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation process). The
configuration file provided for this example is valid if and only if the EtherCAT network consists of
one Accelnet™ drive from Copley Controls. If you have a different EtherCAT drive that uses the
CIA-402 command set, this example still works, but you need to create a new ENI file that uses your
drive.

13-29

13 Ssimulink Real-Time Examples

13-30

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

For this example, four receive PDO variables are defined in the configuration file and three are used
in the three EtherCAT PDO Transmit blocks: Control Word, Modes of Operation, and Target
Velocity. The fourth variable: Profile Target Position is used in example “EtherCAT® Communication -
Motor Position Control with an Accelnet™ Drive” on page 13-33.

* The Control Word PDO variable serves to control the state of the drive. The constant value 15 is
given as input to the block to set the first 4 bits to 1 to enable the drive. Refer to the EtherCAT
User Guide from Copley Controls for details on the bits mapping of this variable. This variable and
bit mapping is in the CIA-402 standard set.

* The Modes of Operation PDO variable serves to set the drive operating mode. The constant value
3 is given as input to the block to set the mode of the drive to Profile Velocity mode. For
details on supported modes of operation, see the Refer to the Copley Controls EtherCAT User
Guide. This variable and bit mapping is in the CIA-402 standard set.

* The Target Velocity PDO variable serves to set the desired velocity. In this example, the velocity
command at the input of the block can be tuned using the slider connected to the gain block
parameter.

Three transmit PDO variables are also defined in the configuration file and used in the three
EtherCAT PDO Receive blocks: Status Word, Actual Motor Velocity, and Actual Motor Position. Note
that EtherCAT refers to variables that the slave sets as transmit variables which are received by the
target model.

¢ The Status Word PDO variable indicates the current state of the drive.

* The Actual Motor Velocity and Actual Motor Position PDO variables indicate the current values of
the motor velocity and position as read in the drive.

Make sure that the required transmit and receive PDO variables are selected in the blocks as
illustrated in Figure 1 before running the example. You could need to refresh these variables by
opening the dialogs and selecting the current variable again.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the host side scopes by double clicking each, data is relayed from the target back to the
development computer and displayed.

Included in the model is the ability to control the peak amplitude of the velocity. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/

EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive

Display the Target Computer Scopes

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the host. Also, the slider is active in external mode.

The Scope output images are referred to by the name in the title bar for each image. Discussion
follows each image.

Scope shows the target to slave timing error as synchronization takes place using the bus shift
method. The slave is adjusted to match the target timing resulting in a damped wave showing good
phase lock around 4.5 to 5 seconds. The hash is a manifestation of the QNX execution scheduler and
is what is expected. On this graph, 5000 is in nanoseconds, so this shows synchronization between 0
and -2 microseconds with residual random errors.

Scopel shows the progression of states as the drive is initialized. Most of the time is taken to achieve
time synchronization between target and EtherCAT slaves. The SafeOp (=4) to Op (=8) state
transition occurs after a short settling time once the timing error is below the allowed error.

13-31

13 simulink Real-Time Examples

13-32

Scope2 shows the position of the motor which is a phase shifted version of the sine wave velocity that
is sent to the motor. Note that the motor position does not change until the drive goes to Op state
around 4.3 seconds.

Scope3 shows the velocity that is sent to the drive and the velocity read back from the drive. The
velocity does not change until the drive goes into Op state.

After running the model, you can also use the Simulation Data Inspector to view any signal that has
been marked for signal logging. Signals marked for signal logging have a dot with two arcs above it
in the model editor.

Observations to notice

The velocity command for the motor is a low frequency sine wave. The actual velocity read back from
the controller is delayed by several sample times and the actual position is out of phase by 90 degrees
from the actual velocity, as expected for sinewave variation.

Stop and Close the Model

When the example completes its run, stop and close the model.
close system('slrt ex ethercatVelocityControl');

See Also

* “EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive” on page 13-33
* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive

EtherCAT® Communication - Motor Position Control with an
Accelnet™ Drive

This example shows how to control the position of a motor by using EtherCAT communication. The
example motor drive is from Copley Instruments. This drive uses the CIA-402 (Can In Automation
402) device profile common to many drives. The example can work with other CIA-402 EtherCAT
drives if you generate an appropriate ENI file.

Requirements

This example is preconfigured to use an EtherCAT network that consists of the target computer as
EtherCAT Master device and an Accelnet™ AEP 180-18 drive from Copley Controls as EtherCAT Slave
device. Connect a supported brushless or brush motor to the drive. An example motor that works
with this example is the SM231BE-NFLN from PARKER.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the Accelnet™ drive.
Connect a motor to the Accelnet™ Drive.
Make sure the Accelnet™ drive is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model creates a sine wave, and modulates it by multiplying by the value of the slider control. The
modulated signal is sent as motor position command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex ethercatPositionContr«

13-33

https://www.copleycontrols.com/en/support/
https://www.parkermotion.com/

13 simulink Real-Time Examples

v v—aC] I
EtherCAT Init State
Metwork Device 0 Status e
Master Shift DC
EtherCAT Init Uy >]
DC timing ermor
e Drive 1 (AEF).Receive PDO 1_.Control word
* D MNetwork Device 0 Send control word
EtherCAT PDO Transmit
. Drive 1 {AEP) Receive PDO 1 Modes of operation .
O u Nabwork Device 0 Send Mode of operation

EtherCAT POO Transmit 1
Read the current position for display

Actual_Motor_Position |

*

Drive 1 (AEP) Transmit PDC 1_Actual motor position 0
Metwork Device 0 -

]

—™

Eet an amplitude from the slider Send the new target position

— _—
Target Position Commignd o Drive 1 (AEF).Receive PDO 1 Profile target position

MNetwork Device 0

Gain:Gain

EtherCAT PDO Transmit 2

]

13-34

100

200 300 400 500 GO0 TOO BOO 00O 1000

Figure 1: EtherCAT model for controlling the position of a motor.
Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI File for a Different CIA-402 Drive

If you need to create a new ENI file, you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is CopleyMotorPositionConfig.xml.

Each ENI file is specific to the exact network setup from which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of one Accelnet™ drive
from Copley Controls. If you have a different EtherCAT drive that uses the CIA-402 CanOpen profile,
this example still works, but you need to create a new ENI file that uses your drive. Refer to Can In

EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive

Automation web site at www.can-cia.org for details. EtherCAT CoE embeds CanOpen addressing for
process variables using EtherCAT as the transport layer instead of CAN.

An overview of the process for creating an ENI file is at “Configure EtherCAT Network by Using
TwinCAT 3”

For this example, four receive PDO variables are defined in the configuration file and three are used
in the three EtherCAT PDO Transmit blocks: Control Word, Modes of Operation, and Profile Target
Position. The fourth variable: Target Velocity is used in example “EtherCAT® Communication - Motor
Velocity Control with Accelnet™ Drive” on page 13-28.

* The Control Word PDO variable serves to control the state of the drive. The constant value 15 is
given as input to the block to set the first 4 bits to 1 to enable the drive. For details on the bit
mapping of this variable, refer to the Can In Automation web site. This variable and bit mapping is
in the CIA-402 device profile.

* The Modes of Operation PDO variable serves to set the operating mode of the drive. The constant
value 8 is given as input to the block to set the mode of the drive to Cyclic Synchronous
Position mode. For detailed documentation, refer to the Can In Automation web site. This
variable is in the CIA-402 device profile.

* The Profile Target Position PDO variable serves to set the desired position. In this example, the
position command given as input to the block is a sine wave modulated by the constant Amplitude
value linked to the slider control in the model.

Transmit PDO variables (transmitted by the slave) are also defined in the configuration file and one is
used in the EtherCAT PDO Receive block: Actual Motor Position for the drive. The Actual
Motor Position PDO variable indicates the current value of the motor position as read in the drive.
Make sure the required transmit and receive PDO variables are selected in the blocks before running
the example. You could need to refresh these variables. Note that EtherCAT refers to variables that
the slave sets as transmit variables which are received by the target model.

Make sure that the required transmit and receive PDO variables are selected in the blocks as
illustrated in Figure 1 before running the example. You could need to refresh these variables by
opening the dialogs and selecting the current variable again.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed.

Included in the model is the ability to control the amplitude of the cycling motion. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the

Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build and run.

13-35

https://www.can-cia.org
https://www.can-cia.org
https://www.can-cia.org

13 simulink Real-Time Examples

13-36

Display the Target Computer data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the host. Also, the slider is active in external mode.

Scope shows the Distributed Clocks timing difference between the master stack running on the target
computer and the timing on the drive. This ENI file is configured to use Master Shift mode for DC.
The clock on the target computer is adjusted to match the timing on the EtherCAT reference clock on
the first DC enabled slave.

Scopel shows the state progression from Idle to Init (=1) to PreOp (=2) to SafeOp (=4) for a very
short time visible if you zoom in, to Op (=8) at around 4.3 seconds.

Scope2 shows both the sine wave being sent to the drive (blue) and the actual position (yellow). This
is zoomed into the few seconds right when the drive went to Op state and external control starts.
Since the motor hardware cannot respond instantaneously, and the commanded position is not 0, you
see the actual position ramp up and overshoot slightly before settling down to follow the commanded
position. The time delay between command and actual is roughly 18 sample time steps with this

EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive

drive. The controller inside the drive and motor inertia are responsible for this longer time delay.
Other drives may have different delay characteristics.

After running the model, you can use the Simulation Data Inspector to view any signal that has been
marked for signal logging. Signals marked for signal logging have a dot with two arcs above it in the
model editor.

Observations to notice

This is a simple motor control example. The numerous tunable parameters inside the drive are not
adjusted in this model. Adjusting those needs a more advanced model using the CoE/SDO blocks.

Close the Model

When the example completes its run, stop and close the model.
close system('slrt ex ethercatPositionControl');

See Also

* “EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive” on page 13-28
* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

13-37

13 simulink Real-Time Examples

Generate ENI Files for EtherCAT® Devices

13-38

This example shows how to generate EtherCAT network information (ENI) files to use in Simulink®
Real-Time™ with EtherCAT devices.

The example shows the generation process steps in EtherCAT Configurator and the process steps in
the TwinCAT XAE plugin for Microsoft Visual Studio®.

The hardware connections are:

* EK1100 -- EtherCAT coupler
* EL3062 -- EtherCAT terminal
* EL4002 -- EtherCAT terminal
* EL9011 -- Bus End terminal

The EK1100 coupler connects EtherCAT with the EtherCAT terminals (ELxxxx). One station consists
of an EK1100 coupler, any number of EtherCAT terminals, and a bus end terminal.

To provide power connections, connect the 24 V and 0 V terminals of the EK1100 to a 24 V regulated
power supply (RPS) +Ve and -Ve terminals.

The EL3062 analog input terminal processes signals in the range of [-10, 10] V.
The EL4002 analog output terminal generates signals in the range of [0, 10] V.

To configure the EtherCAT network, connect the EtherCAT devices to the development computer on
which the EtherCAT configurator is running. This connection permits scanning and discovery of the
EtherCAT devices. After the configurator generates the XML file, you can reconnect the EtherCAT
devices to the target computer. This diagram shows the suggested connections.

EtherCAT In

([
[}

=|
|

il s|

To RPS +Ve
To RPS -Ve

0 om

TEdl
§ on

¢

>ug
=T

N >m

| e
=1 |
o -

Eom

i 'l

]
L

Install TwinCAT 3.1 XAE and Run Microsoft Visual Studio® with TwinCAT

The latest version of TwinCAT is the 3.x version and that is the preferred configuration tool.

Generate ENI Files for EtherCAT® Devices

The XAE sub version does not contain the full run time engine that runs on Windows. This is available
free of charge from the Beckhoff web site. For use with Simulink Real-Time, you do not need the run
time engine because you are using the run time implementation on the target. The full version with
run time engine requires the purchase of a license from Beckhoff.

The TwinCAT 3.1 software requires a supported version of Microsoft Visual Studio to be installed.
TwinCAT 3.1 uses the MSVC GUI integration and does not have a GUI by itself. The versions of MSVC
with which a given version of TwinCAT works are discussed in the TwinCAT documentation.
Installation finds supported MSVC versions on your machine and installs to them.

To install the TwinCAT 3.1 XAE:

Go to www.beckhoff.com and select Download.

Select TwinCAT 3 and download the setup.

Install TwinCAT 3.

Start Microsoft Visual Studio.

From the TwinCAT menu, select Show Realtime Ethernet Compatible Devices.

N U1 A W N M

Select the Ethernet adapter for your EtherCAT device, then select Install.

Because TwinCAT installs an Ethernet filter inline with the Ethernet port you have selected, it is good
practice to add an extra Ethernet port to use exclusively with EtherCAT to avoid any possible problem
the filter can cause when sharing the Simulink Real-Time host-target communication port with
TwinCAT.

All EtherCAT configuration programs use EtherCAT Slave Information (ESI) files to describe the
slaves that are found on the network. These Beckhoff configuration programs come prepopulated
with mostly Beckhoff devices. To correctly configure an EtherCAT network with devices from other
manufacturers, you may need to get the correct ESI file from the device manufacturer web site. If you
do not have an ESI file for a slave on your network, the scan process does not populate the Solution
Explorer with the correct name of the device and the read and write variables are not correct.

To create a new TwinCAT project in Visual Studio:

Start Visual Studio. Go to File > New > Project.
Under Installed, select TwinCAT Projects and click OK.

Verify whether the project has been created successfully in the status bar of Microsoft Visual
Studio.

4 Enter your license if this instance is the first time that you are using TwinCAT and you installed
the full version. If you are using TwinCAT in evaluation mode, fill in the Captcha.

Observe the Solution Explorer pane the left side of Visual Studio.

Go to TWINCAT in the menu and select Scan. You can also right click Solution Explorer >
your TwinCAT project > I/O > Devices > Scan.

7 A dialog box opens with the message All devices may not automatically be found. Click OK
and wait for the scan to complete. You now see a dialog box saying New I/O devices have been
found.

8 Ensure that the check box is selected, then click OK. A dialog box appears with a Scan for
boxes? message. Click Yes. The EtherCAT devices in your network are scanned, and the devices
appear.

9 You see a dialog box that asks whether to activate free run mode. Select No.

13-39

https://www.beckhoff.com/

13 Ssimulink Real-Time Examples

10 Observe the Solution Explorer and verify that the devices were scanned correctly.

When you first start TwinCAT the right information panel is not displayed. You need to double-click
any item in the tree view the first time. After that the information dialog for any item is displayed by a
single click on that item in the Solution Explorer tree view.

W TwinCAT Project] - Microsoft Visual Studie YA & | QuickLaunch (Ctrl+Q) P - B x
File Edit View Project Build Debug TwinCAT TwinSAFE PLC Team Tools Test Scope Analyze Window Help 1 David Skolnick ~
B-f1-2 XA Release ~ || TwinCAT RT (x64) ~| p Attach... ~ B ARG
= B @3 wE T, <Local> - - -
Solution Explorer > 1 x Properties > i x
& m-oa g E| Device 2 (EtherCAT) EtherCAT Master -
Search Solution Explorer (Ctrl+;) P~)
R Solution 'TwinCAT Project' (1 project) B Misc
4 gl TWinCAT Project1 (Name) Device 2 (EtherCAT)
4 Edj SYSTEM Disabled SMDS_NOT_DISABLED
¥ License ltemType 2
b @ Real-Time PathMame TID*Device 2 (EtherCAl
El Tasks E Persistent
5fs Routes SavelnOwnFile False
¥5 Type System
[@] TcCOM Objects
MOTION
pLC
[saFeTy &
[l
4 o
4 ""% Devices
4 57 Device 2 (EtherCAT)
*B mage Error List R x
*8 |mage-Info Entire Solution - |8 0 Errors | ‘ 1 0Warnings ‘ |0 0 Messages Build + IntelliSense -
- .
b & adllirs Search Error List P-
3 Inputs
4 [Outputs Description Project File Line
B Frm0Ctrl
B Frm0WcCtrl
I DevCtrl
b [InfoData
4 ([Term 1 (EK1100)
b @ InfoData
b ™ Term 2 (EL3062)
b ™ Term 3 (EL4002) Misc
B Term 4 (EL9011)
&% Mappings
Exception Settings Error List | Qutput Properties Toolbox

This item does not support previewing 4 Publish «

Configure EtherCAT Master Node Data with TwinCAT

To configure the EtherCAT master node, create and configure a task, then add the inputs and outputs
to the task.

To create an EtherCAT Task:

1 In the Solution Explorer, right-click the Tasks node and select Add New Item.

2 In the Insert Task dialog box, select TwinCAT Task With Image, provide a name for the task,
and click OK.

3 Select the task that you created. The value Cycle Ticks determines the cycle time as a multiple
of the Base Time determined on the Real-Time item. The default task time is set to 10 ms. If
you are using Distributed Clock synchronization, a task time of 1-2 ms is the slowest that works
with Master Shift DC mode.

4 Create at least one cyclic input/output task. Link this task to at least one input variable and one
output variable on each slave device.

5 Ifyou want to run faster than 1ms time, you need to change the base time on the Real-Time item
above Tasks. On the Settings tab, you need to change the Base Time selection to a faster one.

13-40

Generate ENI Files for EtherCAT® Devices

By using distributed clocks (DC), the EtherCAT protocol can synchronize the time in all local bus
devices within a narrow tolerance range. Only some EtherCAT devices support DC. It is important
that if a device supports DC, you configure it accordingly. For example, in the example configuration,
the EL4002 supports DC. Most motion controllers (motor drives) support DC and some require it to
get to Op state.

To configure EtherCAT DC:
Enable DC and choose Bus shift or Master shift DC mode.

Click on the Device n (EtherCAT) node

Select the EtherCAT tab in the information panel.

Click on Advanced Settings which opens a new dialog.

In the Advanced Settings dialog, select the Distributed Clocks page.

g A W N R

By default the Automatic DC Mode Selection box is checked, which generally gets you Master
Shift DC mode. The first DC enabled slave is the reference clock and the Simulink Real-Time
execution time is shifted slightly to align execution with the reference clock.

6 Deselect the Automatic mode and you have control over which DC mode to use or to turn it off.
Next items are with Automatic deselected.

7 With DC in use deselected, no Distributed clock synchronization takes place. This results in
much quicker initialization time to get to Op state, but there is no synchronization between
slaves.

8 With DC in use selected, you have two different synchronization methods between the
Speedgoat target machine and the EtherCAT slaves.

9 Independent DC Time uses the first DC enabled slave as the reference clock and the target
machine clock is adjusted slightly to phase lock model execution to the first DC enabled slave.

10 DC Time controlled by TwinCAT Time should be read as controlled by target machine time
in Simulink Real-Time. This is bus shift mode where the target machine is the reference clock
and the slave execution times are shifted slightly to phase lock to the target machine.

11 Select both Continuous Run-Time Measuring and Sync Window Monitoring.
Now that you have chosen the DC mode to use, you can visit all of the DC enabled slaves in your
network and set them to the correct mode. This example ENI file only supports one DC enabled slave,
the EL4002.

Click the node Term 3 (EL4002) and select the DC tab.

2 By default, the Operation Mode is set to SM-Synchron which does not synchronize output to
DC time. Change the Operation Mode to DC-Synchron. Different slaves have different names
for the operating mode.

3 Click Advanced Settings and set the Distributed Clock options as shown.

13-41

13 simulink Real-Time Examples

04 TwinCAT Project! - Microsoft Visusl Studio YA & | Quicklaunch (Cti-Q) P - B X
File Edit View Project Build Debug TwinCAT TwinSAFE PLC Team Tools Test Scope Analyze Window Help 1 David Skelnick ~

: g 4 R Release ~ | TwinCAT RT [x64) - P Attach.. - a - RARIERE .
254 | @3 & ."_ <Local> ol = = =

Solution Explorer

R B Gl TwinCAT Project] & X -

Properties s -~ @ x

T -
& o- a |k EI General EtherCAT DC Process Data Statup CoE-Online Online Term 3 (EL4002) EL4002 2Ch. Ana. Output 0-1
Search Solution Explorer (Ctrl+;) P~ Elv
X X Operation Mode: DC-Synchron ~ .
] Solution 'TwinCAT Project’ (1 project) = B Misc
4 o] TwinCAT Projectl Advanced Seftings.. (Name) Term 3 (EL4002)
4 m SYSTEM Disabled SMDS_NOT_DISABLED
¥ License a0 e 5
- Advance etings
b @ Real-Time o THD*Device 2 (EtherCAl
4 BT el Distributed Clock Distributed Clack
4 [& Task1 False
'5 Image Cyclic Mode
Inputs Operation Mode: DC-Synchron ~
W Cutputs i
2. Routes Enable Syne Unt Cydle (us):
&5 Type System SYNCD
[@] TcCOM Objects Cycle Time (us) Shift Time: (us)
e _
TLTION @S UnitGyole 1 ~| User Defined P
e O User Defined = SYNCO Cydle
fd -) B
4 Fio
4 % Devices [Based on Input Reference
4 =% Device 2 (EtherCAT) Error List
3% Image Entire Sol [Enable SYNC 0
able =
*8 |mage-Info ICI
b 2 SyncUnits Search Erroj
4 Inputs D| SYNCA
4 [Outputs () Sync Unit Cycle Cycle Time (ps):
& Frm0Ctrl
& Frm0WcCtrl @ SYNC 0 Cycle k1 | Shift Time {us):
> DevCtrl Enable SYNC 1
I [InfoData
4 [Term 1 (EK1100)
p [InfoData [[1 Use as potential Reference Clock
b ™ Term 2 (EL3062)
4 ™ Term 3 (EL4002) Cancel
b AO Outputs Cha
b Bl AO Outputs Cha ™
4 3 Exception Settings ErrorList Output Properties ' Toolbox

4 Publish

To export and save the EtherCAT configuration, generate the ENI file:

1 Click the node for your EtherCAT device and click the EtherCAT tab.
2 Click Export Configuration File.

3 Inthe Save As dialog box, enter an XML file name, such as simple adda eni.xml, then click
Save. This XML file is the ENI file. The ENI file and the Simulink Real-Time model that uses the
ENI file cannot have the same name. They must have different names.

4 When you close the TwinCAT project, the editable version of this configuration is saved in the
project file. You can modify the configuration by opening this project and by exporting to XML
again.

Install and Run EtherCAT Configurator ET9000
To install the EtherCAT configurator ET9000:

1 Go to www.beckhoff.com and select Download.

2 Select ET9000 and download the setup.

3 Install the ET9000 configurator and start the software.

4 Run the configurator and select the correct license keys or select the evaluation option.

13-42

https://www.beckhoff.com/

Generate ENI Files for EtherCAT® Devices

The EtherCAT configurator creates an EtherCAT network information (ENI) file from the standardized
slave description files (ESI - EtherCAT slave information). To generate the ESI files for the slaves:

1 Start the ET9000 software.

2 Right-click I/O Devices and select Scan Devices. Click OK.

3 Select the correct network interface card (NIC) in your system and click OK.

4

When the dialog box asks whether to scan for boxes, select Yes. As the EtherCAT devices in your
network are scanned, they appear in the System Pane.

5 When the dialog box asks whether to activate free run mode, select No.

When the scan is complete, expand the tree under Devices in the I/0. The EL3062 and the EL4002
devices appear under the EK1100 device.

E Untitled - EtherCAT Configurator

File Edit Actions View Options Help
DS | | [d4 B [\ ®|% |5 Qs &0 7
7 SYSTEM - Configuration General | Adapter EtherCAT Oniine CoE-Online
= Real-Time Settings
Additional Tasks Name: |Davice 2 (EtherCAT) ‘ Id: |2 |
0 - Configuration
B8 1/0 Devices Type [EthercaT |
=25 Comment:
== Device 2-Image
Inputs
1§ Outputs
- Term 1 (EKT100)
£ Term 2 (EL3062)
¢ @-§ Al Standard Channel 1 [[] Disabled Create symbols [
- &7 Al Standard Channel 2
- WcState
Term 3 (EL4002)
- @l AO OQutputs Channel 1
-l AO Outputs Channel 2
- WcState
L Term 4 (ELO0TY)
&8 Mappings
Mumber Box Mame Address Type In Size Out Size E-Bus (m...
[E 1 Term 1 (EK1100) 1001 EK1100
52 Term 2 (EL2062) 1002 EL2062 80 1870
3 Term 3 (EL4002) 1003 EL4D02 40 1730
"l a Term 4 (EL9011) EL90T1
Ready

Configure EtherCAT Master Node Data with Configurator

The configurator uses the ESI to configure the EtherCAT master node. This operation includes
creating a task, configuring the task, and adding the I/O to the task.

To create an EtherCAT task:

13-43

13 simulink Real-Time Examples

1 Under SYSTEM - Configuration, right-click Additional Tasks > Append Task.
2 Provide a name for the task and click OK. In this example, the name of the task is slrt task.
3 Click the task. The value Cycle Ticks determines the cycle time. In the settings, it is set to 10ms.

To configure an EtherCAT task outputs:
1 (Click and drag the node Analog output (under AO Outputs Channel 1) to Outputs (under
slrt_task).

2 Select Analog output (under Outputs) and select the Variable tab.

Click the Linked to button and select the corresponding entry (Analog Output under AO
Outputs Channel 1 under Term 3).

By using distributed clocks (DC), the EtherCAT real-time Ethernet protocol can synchronize the time
in all local bus devices within a narrow tolerance range. Only some EtherCAT devices support DC.
When the device supports DC, it is important to configure a device for DC. For example, in the
example configuration, the EL4002 supports DC. To configure the EL4002 for DC:

1 Click Term 3 (EL4002) in the System Pane and select the DC tab. By default, the Operation
Mode is set to SM-Synchron. Change Operation Mode to DC-Synchron.

2 Click the Advanced Settings button and set the Distributed Clock options as shown.

=
—

File Edit Actions View Options Help

E=3=1 | |64 B |8 &% |2 Q|éa% (€3 7

[=-7= SYSTEM - Cenfiguration
| =¥ Real-Time Settings
| 2-[B% Additional Tasks

] =-[B1 slrt_task

+ sIrt_task-Image Advanced Settings
T Inputs

E| $. Outputs

General EtherCAT DOC Process Data Statup CoE -Online Online

Operation Made: SM-Synchron ~

? Advanced Settings
: i.gbl Anzlog output
algl - Configuration - Distributed Clack Distributed Clock
= 170 Devices
£ == Device 2 (EtherCAT) Cydlic Mode
+ Device 2-lmage Operation Mode: DC-Synchron ~
ﬂ Inputs Enable Sync Unit Cycle (us): [10000
(- @l Outputs
5 Term 1 (EKT100) SYNCO

B Term 2 (EL3062) Cycle Time: (us): Shift Time: (us):

@ Al Standard Channel 1 @SncUntCyde [x1 v User Defined P]
f i\\: Sst:'ldard Channel 2 () User Definad + SYNCO Cycle
. catate
Term 3 (EL4002) 10000 0~ D
-§| AO Outputs Channel 1
; ‘l AO Outputs Channel 2 [] Based on Input Reference
: - § WeState
- &f WeState Enable SYNC 0 -
L Term 4 (ELO01T) b]
-85 Mappings
SYNC 1
() Sync Unit Cycle Cycle Time {ps): 10000
(® SYNC 0 Cycle X1 w| Shift Time fus): D
[Enable SYNC 1

[] Use as potential Reference Clock

Ready

13-44

Generate ENI Files for EtherCAT® Devices

Import a Device with the Configurator

Device import is often part of the workflow for third-party (different manufacturer) devices. Use this
process to configure a device that is not present in the Beckhoff system. Numerous motors and their
drives fall under this category. Sometimes, you must configure a device that is not present in the
Beckhoff system. The TwinCAT EtherCAT master or System Manager uses the device description files
for the devices to generate the configuration in online or offline mode.

The device descriptions are contained in ESI files (EtherCAT Slave Information) in XML format. These
files can be requested from the respective manufacturer and are made available for download. An
XML file can contain several device descriptions.

The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website and are stored in
the TwinCAT installation folder. The default for TwinCAT2 is C:\TwinCAT\IO\EtherCAT. The files
are read (once) when you open a new System Manager window and if they have changed since the

last time that you opened the System Manager window.

If using a TwinCAT configurator, the TwinCAT installation includes the set of Beckhoff ESI files which
were current at the time when the TwinCAT build was created. For TwinCAT 2.11, TwinCAT 3, and
later, you can update the ESI folder from the System Manager if the programming PC is connected to
the Internet (Option > Update EtherCAT Device Descriptions).

To import a device from an ESI file:

1 For the ET9000 Configurator, the ESI folder is C:\Program Files (x86)\EtherCAT
Configurator\EtherCAT. Paste the file from the manufacturer into this location.
After adding the XML file, restart your configurator and select Actions > Reload Devices.

3 Ifthe device is connected, you can scan again to add the devices. (See Install and Run EtherCAT
Configurator ET9000.)

4 If the device is not connected, you can also add the device in Offline mode. If you want to add the
device to the same term, right-click your device in the hierarchy and select Append Box. A
dialog box appears asking which device to add.

5 Click the square icon next to Beckhoff Automation GmbH to collapse the hierarchy. You now see
the manufacturer whose devices you added.

6 Select the device that you want to add and click OK. Your device should now appear in the
System Pane on the left.

7 Repeat the steps under Configure EtherCAT Master Node Data to add the Outputs to your
task. In this example, drag the available outputs under your drive to Qutputs under slrt_task.
Remember to make the appropriate DC Configurations for your device.

DC configuration information is available from the manufacturer. In this case, enable DC.
Continue with configuration of the terminals.

Export and Save the EtherCAT Configuration with the Configurator

To generate the ENI file and save the configuration:

Click the node for your EtherCAT device, then click the EtherCAT tab.
Click Export Configuration File.

In the file save dialog box, enter an XML file name, such as BeckhoffAIOconfig.xml for this
example, and then click Save. This XML file is the ENI file. The ENI file and the Simulink® Real-

13-45

13 Ssimulink Real-Time Examples

Time™ model that uses the ENI file cannot have the same name. They must have different
names.

4 Save the configuration as an ESM file. Click File > Save. If the ESM file corresponding to the
ENI file is not present, the Beckhoff ET9000 program cannot open the ENI file.

5 In the File Save dialog box, enter an ESM file name, such as et9000config.esm, and then
click Save.

See Also

* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”
* “EtherCAT Configurator Component Mapping”

13-46

EtherCAT® Communication - Detect EtherCAT network failure and reset

EtherCAT® Communication - Detect EtherCAT network failure
and reset

This example shows how to use the EtherCAT Notifications block to detect a failure in the connected
network and to restart the network when the failure is corrected.

Only a disconnected Ethernet cable into the first slave is detected by this example. More complicated
failure situations can be detected if you study the pattern of notifications that result and write the
embedded MATLAB block to account for those.

Requirements

To run this example as presented, you need a Beckhoff EK1100 with EL1202, EL2202-0100, EL3102
and EL4032 slave modules. The model does not write to any process objects. Replacing the ENI file
with one appropriate to your network works as well.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the EK1100 interface module.
Make sure the EK1100 is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model is a beginning of a full implementation to catch network failures and reinitialize the
network once the failure is fixed. The simple state machine in the embedded MATLAB block can be
replaced with a State Flow implementation, which may be necessary for more complicated failure
detection and recovery.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder or on the MATLAB path because the file name is present without directory information.

If you want to modify this model to experiment with it, copy the example configuration file and the
model file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox','slrealtime', 'examples', 'slrt ex ethercat notifyreset'

13-47

13 Ssimulink Real-Time Examples

13-48

EtherCAT Init
Meatwork Device 0 Status L b ' C]
Bus Shift DC
EtharZAT Init
Display offeets
nksiat f— e u+10 I_ »]
inkstatus
whi S
whi amor
. freep 2 T
EtherCAT Get Notifications, ,_ Erame resg error
Matwork Device 0 Values 1 F b D
alop _ g
Al slaves Operational
EtherCAT Gat Motifications alaveEmor T -
Slave Error
& scanbus -
ten Scanbus error =
statechg | u+28 ..":-_
: L1
----- [™.
Do o u+24 »
EtherCAT Get Stat ——
therCAT Get State - stat)
Metwork Device D —000e i deinsync | u+22 - R D
[ezn | "
EtherCAT Get State siabest: I u+20]
L= 1
neweiate | u+10 >
L |
Reset State Machine ul

r
I

L MewSiate PrevSiatep—— 1

Switch to Op State

Figure 1: EtherCAT model for detecting a disconnected Ethernet cable at the first slave and
reinitializing the network once the cable is reconnected.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI File for a Different Slave Network

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is Stack4 BS 1ms.xml.

EtherCAT® Communication - Detect EtherCAT network failure and reset

Each ENI file is specific to the exact network setup for which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of a Beckhoff EK1100
with EL1202, EL2202-0100, EL3102 and EL4032 slave modules. If you have a different EtherCAT
drive, this example still works, but you need to create a new ENI file that uses your slave devices.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two scopes by double clicking each, the data is relayed from the target back to the
development computer and displayed there.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer data

If you run the model using the Run on Target button, the external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks also
work.

When running this model, to demonstrate the reinitialization stages, you need to disconnect and
reconnect the Ethernet cable between the target machine and the EtherCAT slave network. When you
reconnect the cable, you see the DC timing perform the same resynchronization that occurs during
the initial period.

When using Run on Target, Scope shows the DC timing error between the master code on the
target and the first DC enabled slave. Because the error is returned as nanoseconds, this graph
shows that the timing difference settles down to the order of 3-5 microseconds (3000 to 5000
nanoseconds) difference between the DC enabled slaves and the target machine running the code.
The residual scatter just reflects task scheduling variability in the target computer RTOS.

In this experimental run, the Ethernet cable was disconnected twice during the 30 second run.
Disconnection occurred at about 7 seconds, reconnection at about 12 seconds. This process repeats

13-49

13 simulink Real-Time Examples

at about 18 seconds and 21 seconds. Each time the cable is reconnected, the timing error shows a
pulse that shows drift between target and EtherCAT network during the time the cable was
disconnected and is the expected resynchronization behavior.

Scopel shows several logical signals with vertical offsets to show a logic analyzer like display. From
the top of the image these are:

Link status (yellow)

Working count error (blue)

Frame response error (red)

All slaves Operational (green)

Slave Error (purple)

O U A W N R

Scanbus error (light blue)

Disconnecting the cable caused a scanbus error as seen on the light blue trace. Nothing happens
until the cable is reconnected at about 12 seconds. The link status reflects the single time step
notifications that indicate the link going away and the link coming back. On the first disconnection,
you do not see the link going away notification, but you do see the link coming back. The embedded
MATLAB block keeps a persistent variable with the link status with an initial value of 2 and changes it
depending on the notifications.

After the link comes back, there is both a slave error and frame response error before All Slaves
Operational goes down for a sample time. At that point timing resynchronization starts and you see
the damped wave showing the timing errot falling to within a few microseconds of error.

Scope2 shows more status outputs with:

1 statechange (yellow)

13-50

EtherCAT® Communication - Detect EtherCAT network failure and reset

sbdone (blue)

dcinsync (red)

statechange request (green)
newstate (purple)

current state (light blue)

o U A W N

When the link goes down, the stack notices that and performs a scan of devices on the bus. That is
the shdone mark at about 7 seconds that also resulted in the sbscan error shown in Scopel. Next
when the link is restored at 12 seconds, another bus scan is performed, shown at 12 seconds in the
blue trace. The embedded MATLAB block requests a state change to PreOp (=2) shown in the green
and purple traces. Once Preop is reached, you see another state change request to go to Op (=8)
state which is the second change in green and purple. That starts resynchronization of the clocks
between the development comptuer and the target computer, which takes a few seconds until you see
dcinsync at about 14 seconds (red trace) with the transition to Op state right after.

Disconnect the cable again to repeat the whole sequence again starting at about 18 seconds.

While this example needs manual intervention to disconnect and reconnect the Ethernet cable, the
same restart can be invoked by just requesting PreOp state follwed by a request for Op state,
skipping the interaction with the link status if triggered by some other condition in the model.

If you run the model from the command line, you can use the Simulation Data Inspector to view any
signal that is marked for signal logging. Signals marked for logging appear with the dot with two arcs
above it in the model editor.

See Also

* “Modeling EtherCAT Networks”

* “EtherCAT® Communication - Sequenced Writing Slave CoE Configuration Variables” on page 13-
57

* “EtherCAT® Communication - Sequenced Writing Slave SoE Configuration Variables” on page 13-
52

close system('slrt ex ethercat notifyreset');

13-51

13 simulink Real-Time Examples

EtherCAT® Communication - Sequenced Writing Slave SoE
Configuration Variables

13-52

This example shows how to use SoE blocks and a simple state machine to write configuration values
to variables that can only be written before going to EtherCAT Op state. For code needed to use the
CoE blocks for slaves that understand CoE protocol, see “EtherCAT® Communication - Sequenced
Writing Slave CoE Configuration Variables” on page 13-57.

For slaves that understand CoE addressing, restrictions on when a specific object can be written is
somewhat rare. For slaves that understand SoE addressing, this restriction is much more common.

Changing configuration objects in slave devices before starting IO to the external connections is
useful, even if modifying the values is not restricted.

This example also shows distributed clocks synchronization using the bus shift DC mode where the
slaves are shifted in time to match the execution time of the master.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Master device and at least one slave that has SoE addressed objects. The supplied ENI file is for a
Beckhoff AX5103 drive.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:
1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the AX5103 drive.

2 Make sure the AX5103 is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model illustrates how you can read or write to SoE/SSC objects if they are only writable in
EtherCAT PreOp state. You can move the SoE/SSC transfers to EtherCAT SafeOp state by changing
the Initialization end state in the EtherCAT Init block and by also changing the constant in the
Wait for this state constant block. These settings direct the state machine to start sending SoE
messages when it reaches the initialization end state.

1 Init=1

2 PreOp=2
3 SafeOp=4
4 Op=28

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder or on the MATLAB path because the file name is present without directory information.

EtherCAT® Communication - Sequenced Writing Slave SoE Configuration Variables

If you want to modify this model to experiment with it, copy the example configuration file and the
model file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex ethercat asyncSoE SSC

EtherCAT Init
Matwork Device 0 Status — L W ——
Bus Shift DC
=2
%
=et to go to PreCp (==2) state u N —D|§|
»
Cycle through SSCrequests
in a specific order Data
|—P inge 1 Status F—
e > | I
EtherCAT Get State [HAEL ’@—’ -
2 Metwork Device 0 Dtate curstate oprequest »
& s - HW Decode »
EtherCAT Get State fon e SoE commands)
o n order
P staius —— ‘
g1
Cyele contral . v
Go o Op
] ()
» ()

:
|
0

R

Figure 1: EtherCAT model for sequencing through SoE/SSC commands after pausing initialization at
PreOp state

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI file for a Different SoE drive
If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as

TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is BeckDrive 1ms.xml.

13-53

13 simulink Real-Time Examples

13-54

Each ENI file is specific to the exact network setup for which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of one AX5103 drive. If
you have a different EtherCAT drive this example still works, but you need to create a new ENI file
that uses your drive.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

If you use a different drive, you need to consult the manual for your devices and find the SoE
mapping. Using that mapping, you need to change the SSC commands in the SOE commands in
order subsystem to use objects on your drive.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two scopes by double clicking each, the data is relayed from the target back to the
development computer and displayed.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks also
work.

When using Run on Target, Scope shows the DC timing error between the master code on the
target and the first DC enabled slave. Since the error is returned as nanoseconds, this graph shows
that the timing difference settles down to the order of 3-5 microseconds (3000 to 5000 nanoseconds)
difference between the DC enabled slaves and the target machine running the code. The residual
scatter just reflects task scheduling variability in the target computer RTOS.

EtherCAT® Communication - Sequenced Writing Slave SoE Configuration Variables

4 Scopel - o x

Eile Tools View Simulation Help

Scopel shows the progression of EtherCAT states, from idle to Init to PreOp, SafeOp and finally Op
state. SafeOp is only entered briefly and only shows up as the value 4 for a few time steps before the
switch to Op state. Since this model uses the distributed clocks mechanism, the switch to Op state
only occurs once the timing error settles down.

4 Scope2 - o x

Eile Tools View Simulation Help

Scope2 shows the status outputs of the 5 async SDO blocks inside the subsystem. Each SDO block is
enabled to write for one time step. The block switches to status = 1 (busy) for a few time steps. On
successful completion status = 2 (done), the block switches for one time step. If a block encounters
an error, the block switches to status = 3 (error) for one time step. On an error, the Cycle control
embedded MATLAB code block stops the sequence and sets the error output, which stops the model.
In that case, the failing block have output an error code that is displayed on Displayl. This display is
zoomed into the interval just after state went to PreOp (=2) state.

Scope4 shows several of the outputs from the Cycle control block. The first 5 are the enable signals,
made true one at a time by Cycle control. The oprequest output is true for one time step to trigger
the request to proceed to Op state. This display is zoomed in to the same interval as in Scope2.

13-55

13 simulink Real-Time Examples

13-56

When all of the requested SSC commands are complete and the state has progressed to Op state, the
done signal is set to true for the remainder of execution. The rest of your model goes into the Op
State Model subsystem.

If you need a different number of SSC commands to execute before Op state, you need to edit the
Cycle control embedded MATLAB code block and modify the persistent array that is currently sized
to have length 10, which is larger than the number of SSC commands being requested.

If you run the model from the command line, you can use the Data Inspector, accessible from the
toolstrip, to view any signal that has been tagged to log with the Log Selected Signals selection
found by right clicking on the signal. Those are marked with the dot with two arcs above it in the
model editor.

See Also
* “EtherCAT® Communication - Sequenced Writing Slave CoE Configuration Variables” on page 13-
57

* “EtherCAT® Communication - Detect EtherCAT network failure and reset” on page 13-47
* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

EtherCAT® Communication - Sequenced Writing Slave CoE Configuration Variables

EtherCAT® Communication - Sequenced Writing Slave CoE
Configuration Variables

This example shows how to use CoE blocks and a simple state machine to write configuration values
to variables that can only be written before going to EtherCAT Op state. For code needed to use the
SoE blocks for slaves that understand SoE protocol, see “EtherCAT® Communication - Sequenced
Writing Slave SoE Configuration Variables” on page 13-52.

For slaves that understand CoE addressing, limited ability to read or write specific objects is
somewhat rare. For slaves that understand SoE addressing, this restriction is much more common.

This example also shows distributed clocks synchronization using the bus shift DC mode where the
slaves are shifted in time to match the execution time of the master.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
master device and at least one slave that has CoE addressed objects. The supplied ENI file is for a 5
element slave stack: EK1100+EL1202+EL2202+EL3102+EL4032.

EtherCAT in Simulink Real-Time requires a dedicated network port on the target computer that is
reserved for EtherCAT by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:
1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the EL1100 interface.

2 Make sure the EK1100 is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT master node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model illustrates how you can read or write to CoE/SDO objects if they are only writable in
EtherCAT PreOp state. You can move the CoE/SDO transfers to EtherCAT SafeOp state by changing
the Initialization end state in the EtherCAT Init block and by also changing the constant in the
Wait for this state constant block. These settings direct the state machine to start sending CoE
messages when it reaches the initialization end state.

1 Tnit=1

2 PreOp=2
3 SafeOp=14
4 Op=28

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder.

If you want to modify this model to experiment with it, then copy the example configuration file from
the example folder to the current folder. To open the model, in the MATLAB Command Window, type:

13-57

13 Ssimulink Real-Time Examples

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples', 'slrt ex ethercat asyncCoE cyc

EtherCAT Init
Metwork Device 0 Status U ¥ > D
Bus Shift DC
=at to go to Prelp (==2) state
sy v—a

Cycle through SDOrequests in a specific order
|:|—|_’ bem
M F=0hot frigs w1 Error Codes -
Status F—
EtherCAT Get State R SD0 commands
MWatwork Device 0 State e st n order
EtherCAT Get State ﬁ
tatus = 3
B
Cycle control v
Go to Op
Lk NI
n
-
>)
- Op State Model
-

[}—sferer

Stop Simulation
if an error occurred
in any of the SDO commands

Figure 1: EtherCAT model for sequencing through CoE commands after pausing initialization at
PreOp state

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT slave devices that are daisy chained together with Ethernet cable is a Device, also referred
to as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The
Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init
block connects these two so that other EtherCAT blocks use the Device Index to communicate with
the slave devices on that EtherCAT network.

13-58

EtherCAT® Communication - Sequenced Writing Slave CoE Configuration Variables

If you only have one connected network of EtherCAT slaves, and you have only reserved one Ethernet
port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port Number = 1.

Create an ENI File for a Different Set of Slaves

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is Stack4 BS 1ms.xml.

Each ENI file is specific to the exact network setup from which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of an
EK1100+EL1202+EL2202+EL3102+EL4032. If you have a different set of EtherCAT slave devices
this example works, but you need to create a new ENI file that uses your devices.

For overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

If you use different slave devices, you need to consult the manual for your devices and find the CoE
mapping. Using that mapping, you need to change the SDO commands in the SDO commands in
order subsystem to use objects on your devices.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two host side scopes by double clicking each, data is relayed from the target
computer to the development computer and is displayed.

Included in the model is the ability to control the amplitude of the cycling motion. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks
also work.

When using Run on Target, the Scope block shows the DC timing error between the master code on
the target computer and the first DC enabled slave. Because the error is returned as nanoseconds,
this graph shows that the timing difference settles down to the order of 3-5 microseconds (3000 to
5000 nanoseconds) difference between the DC enabled slaves and the target machine running the
code. The residual scatter reflects task scheduling variability in the target computer RTOS.

13-59

13 simulink Real-Time Examples

13-60

Scopel shows the progression of EtherCAT states, from idle to Init to PreOp, SafeOp and finally Op
state. SafeOp is only entered briefly and only shows up as the value 4 for a few time steps before the
switch to Op state. Since this model uses the distributed clocks mechanism, the switch to Op state
only occurs once the timing error settles down.

Scope2 shows the status outputs of the 5 async SDO blocks inside the subsystem. Each SDO block is
enabled to write for one time step, then switches to status = 1 (busy) for a few time steps, then on
successful completion status = 2 (done) for one time step. If a block encounters an error, status = 3
(error) for one time step. On an error, the Cycle control embedded Matlab code block stops the
sequence and sets the error output which stops the model. In that case, the failing block has output
an error code that is displayed on Displayl. This display is zoomed into the interval just after state
went to PreOp (=2) state.

4 Scope2 - o x

Scope3 shows several of the outputs from the Cycle control block. The first 5 are the enable signals,
made true one at a time by Cycle control. Then the oprequest output is true for one time step to
trigger the request to proceed to Op state. This display is zoomed in to the same interval as in
Scope2.

EtherCAT® Communication - Sequenced Writing Slave CoE Configuration Variables

When the requested SDO commands are complete and the state has progressed to Op state, the done

signal is set to true for the remainder of execution. The rest of your model goes into the Op State
Model subsystem.

If you need a different number of SDO commands to execute before Op state, you need to edit the
Cycle control embedded MATLAB code block and modify the persistent array that is currently sized
to have length 5, the same as the number of SDO commands being requesting.

If you run the model from the command line, you can use the Simulation Data Inspector to view any
signal that has been marked for signal logging. Signals marked for signal logging have a dot with two
arcs above it in the model editor.

See Also

* “EtherCAT® Communication - Sequenced Writing Slave SoE Configuration Variables” on page 13-
52

* “EtherCAT® Communication - Detect EtherCAT network failure and reset” on page 13-47
* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

13-61

13 simulink Real-Time Examples

Simple ASCII Encoding/Decoding Loopback Test (With
Baseboard Blocks)

13-62

This example model shows how a single floating point number can be converted to ASCII and
transmitted over a serial link. The sending serial port and receiving serial port can be in the same
system or in different systems.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardsimple:

ﬁl‘,l 1 E‘m‘sm 1] = XMT Legacy Serial Port 1 FIFO ———#—]
ASCII Encode
Baszaboard
Sarial F
_———®|XMT Legacy Serial Port2 FIFO pp FIFC wlp ASCI _C]
= = " Read "1~ Decode *
FIFD read ASCI Decode Scope ASCI Decode
Baseboard
Saerial F1

Copyright 2004-2020 The MathWorks, Inc.

See Also

* “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

ASCII Encoding/Decoding Loopback Test

ASCIl Encoding/Decoding Loopback Test

This model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along with some
extraneous data to show how the FIFO Read HDRS block can remain synchronized to the valid byte

stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as strings to
the cell array in the block parameters dialog box. The messages must share the same termination
string. In this example, it is a carriage return followed by a line feed: "\r\n".

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples','slrt ex serialasciitest'))
set param('slrt ex serialasciitest', 'StopTime','30");
sim('slrt ex serialasciitest')

ASCIL

|
*D becode

<

: ASCI Decode 3

——»

p AsCl >
Decode pf Scope ASCII Decode

»

FIEQ
FRead HORS 2

i
S
¥
¥

1
ASCI o

FIFO =
3 Encode

write

Y

o

hA A J

T__
S
-

ASCI Encode 1 FIFC write 1 3 ASCI Decode

FIFO ASCII read o ASCII
Decode

ASCI Decode 4

Copyright 2004-2019 The MathWarks, Inc.

¥

1 —

[

File Tools View Simulation Help

G- BOP® | =-a-C-|FEA-

Ready

See Also

e “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

13-63

13 simulink Real-Time Examples

ASCII Encoding/Decoding Loopback Test (With Baseboard
Blocks)

This example model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along with some
extraneous data to show how the FIFO Read HDRS block can remain synchronized to the valid byte
stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as strings to
the cell array in the block parameters dialog box. The messages must share the same termination
string. In this example, it is a carriage return followed by a line feed: "\r\n".

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.
This example is configured to use baseboard serial ports (legacy serial port and legacy serial port 2).

You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardasciite

1
ASCIL o

¥

¥MT Legacy Serial Port1 FIFO ——#—]

2
3 Encode

ASCI Encode 1

ry

13-

——=—W|XMT Legacy Serial Part2 FIFO

64

ASCI
o Decode 1

¥

ASCI Decode 3

1

-
o 1 e
Dacode — pfl ASCI Decode

ASCI Decode 4 Scope ASCI Decode

FIFO
F Read HORS 2

3

¥

¥

FIFO ASCII read

¥

ASCII
o Decode !

ASCI Decode 5

Copyright 2004-2019 The MathWarks, Inc.

See Also

¢ “RS-232 Serial Communication”

ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)

» “RS-232 Legacy Drivers”

13-65

13 simulink Real-Time Examples

ASCII Encoding/Decoding Resync Loopback Test

This example model shows the ability of the FIFO Read HDRS block to resynchronize after being
repeatedly disabled and its the ability to resolve errors such as when a message is only partially
complete at the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive sample
times. This mimics a worst case scenario where the model updates before the message construction
is complete. As a result, sometimes only part of the message is received. The second pulse generator
alternately enables and disables the FIFO Read HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse Generatorl
block outputs a 0, the count from the FIFO Read HDRS block is 0. When it outputs a 1, the read
catches up by throwing away extra data and returns the last complete value found in the FIFO. Scope
2 indicates when new data is present.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', '"examples', 'slrt ex serialasciisplit'))
set param('slrt ex serialasciisplit','StopTime','30"');
sim('slrt ex serialasciisplit')

» ASCIL 4

Jﬁl\r' 1 Encode
ASCII Encode
B
BN 4PN »p FFO F FFo plp ASCI v ()
_'_i_ _M_ _L_ _;_'_. v write Read HDRS v Decode Scope ASCH Decode
FIF O write 1 FIFQ ASCIl read ASCI Decode 1
ascl ol | " o]
Encode NEREN L Scope FIFO Read HORS _
B
ASCIl Encode 2 i

Copyright 2004-201% The MathWaorks, Inc.

See Also

J

o “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

13-66

ASCII Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)

ASCII Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks)

This model shows the ability of the FIFO Read HDRS block to resynchronize after being repeatedly
disabled as well as the ability to resolve errors such as when a message is only partially complete at
the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive sample
times. This mimics a worst case scenario where the model updates before the message construction
is complete. As a result, sometimes only part of the message is received. The second pulse generator
alternately enables and disables the FIFO Read HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse Generatorl
block outputs a 0, the count from the FIFO Read HDRS block is 0. When it outputs a 1, the read
catches up by throwing away extra data and returns the last complete value found in the FIFO. Scope
2 indicates when new data is present.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardasciis

13-67

13 simulink Real-Time Examples

ASCIH
J"IU |1 Encode C

ASCI Decode

ASCI Encode
TH .
P L B{XMT Legacy Serial Port1 FIFO ———]
+H |
ASCI
Encode D
ASCI Encode 1
- [
_E—h' XMT Legacy Serial Port2 FIFO Ll EIFD , 0 ASCH ,
Read HDRS v Decode
ASCI Decode 1

FIFC ASCI read

:
:

T
£
—

Scope ASCI Decode

h

J

L FIFO Read HDRS

Copyright 2004-2020 The MathWorks, Inc.

See Also

o “RS-232 Serial Communication”

» “RS-232 Legacy Drivers”

13-68

Scope FIFC Read HDRS

—

]

Binary Encoding/Decoding Loopback Test

Binary Encoding/Decoding Loopback Test

This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two messages
along with other elements:

» The first byte, 8, is a count of the remaining number of bytes in the stream.

* The second byte, 5, is an extraneous value (EV).

« [170,1,N] is message 1 (M1).

 [170,2,44,M] is message 2 (M2).

* N and M are numbers between 0 and 255 that are incrementing and decrementing, respectively.

Even though the data stream includes extraneous bytes (5 in this case), the FIFO Read BINARY block
can handle and ignore this extra information. Scope 1 displays the received message 1 data. Scope 2
displays the received message 2 data.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’', 'examples', 'slrt ex serialbinarytest'));

First header byte
Second header byte
Imcrementing counter
.
FIFQ Read 1 "
6 bytes were read.
The remaining 3 bytes
can be ignored.
(]
] Scope FIFO Read 1 Massage 1
EV: [5] J— FFo i er
M1:[170 1 W] »0 - OF »F with header [170.1]
MZ: [170 2 44 M] write Read Blr'hﬂd'\'.“(2
FIFO write 1 FIFO bin read |:| Byte Count
hMassage > [:] Y
Canstruction First headar byte
Scape FIFO Read 2 Second header byte
Fized data byie
>
FIFQ Read 2 Decrementing counter
6 bytes were read.
The ramaining 2 bytes
can be ignored.
Message 2
with header [170.2]
Copyright 2004-2019 The MathWaorks, Inc.
See Also

e “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

13-69

13 Ssimulink Real-Time Examples

Binary Encoding/Decoding Loopback Test (With Baseboard
Blocks)

This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two messages
along with other elements.

» The first byte, 8, is a count of the remaining number of bytes in the stream.

* The second byte, 5, is an extraneous value (EV).

* [170,1,N] is message 1 (M1).

+ [170,2,44,M] is message 2 (M2).

* N and M are numbers between 0 and 255 that are incrementing and decrementing, respectively.

Notice that when the data contains extraneous bytes (5 in this case) the FIFO Read BINARY block can
handle and ignore this extra information.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data. Scope 3
shows the transmitted byte stream. The gain block on the signal to Scope 3 makes the elements of
the vector non-virtual so the scope can see them.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardbinary

—»! 1 : N
Message Construction

Scope Message Construction

EV: [5]
WA [170 1 N]
M2: [170 2 43 M]

¥

XMT Legacy Serial Port1 FIFO ——————]

Message
Construction

»]
FIFO Read BINARY 1
= Scope FIFO Read BINARY 1
p

1
=——P{XMT Legacy Serial Part 2 FIFO |-#{Fy _FFO.
= 2

. »(]
FIFO bin read FIFO Read BINARY 2
—

Scope FIFO Read BINARY 2

Copyright 2004-2019 The MathWaorks, Inc.

See Also

13-70

Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)

e “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

13-71

13 simulink Real-Time Examples

Binary Encoding/Decoding Resync Loopback Test

This model shows the ability of the FIFO Read BINARY block to handle messages that are interrupted
and only partially complete. This is a worst case example where every message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send only parts of
messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-character headers.
Ifit finds [170,1] it outputs [3,170,1,N] on port 1. If it finds [170, 2], it outputs
[4,170,2,44,M] to port 2. N and M are numbers between 0 and 255 that are incremenenting and
decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will output 0. The
outputs are padded to the maximum vector size specified in the FIFO Read BINARY block. In this
example output vectors are 6 in width. The count in the first element tells how many elements are
significant.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime', 'examples', 'slrt ex serialbinarysplit'));

I:I Byte Couwnt, Dor 3

First header byte
Second header byte

Incrementing counter

& bytes were read.
The remaining 3 bytas
can be ignored.

v

Scope FIFO Read 1 piassage 1

1
FIFO FIFD Read 1)
Fread BINARY with header [170.1]

FIFD
write

™ O F

3

FIFO Read 2

FIFQ writa 1 FIFO bin read
5 ted
egmeante D Byte Cownt, 0 or 4

Message Construction i

First header byte
Scope FIFQ Read 2

Second header byte
Fixed data byte

*

Decrementing counter

6 bytes were read.
The remaining 2 bytes
can be ignored.

Massage 2
Copyright 2004-2019 The Math\Works, Inc. with header [170,2]

See Also

o “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

13-72

Binary Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)

Binary Encoding/Decoding Resync Loopback Test (With
Baseboard Blocks)

This model shows the ability of the FIFO Read BINARY block to handle messages that are interrupted
and only partially complete. This is a worst case example where every message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send only parts of
messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-character headers.
If it finds [170,1] it outputs [3,170,1,N] on port 1. If it finds [170, 2], it outputs
[4,170,2,44,M] to port 2. N and M are numbers between 0 and 255 that are incrementing and
decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will output 0. The
outputs are padded to the maximum vector size specified in the FIFO Read BINARY block. In this
example output vectors are 1024 in width. The count in the first element tells how many elements are
significant. The Demux blocks discard the uninteresting parts of the signal.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.
To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex serialbaseboardbinary:

B XMT Legacy Seral Port1 FIFO f—#—]

Segmentad
Message Construction

FIFQ Read BIMARY 1
= Scope FIFC Read BINARY 1

1

—=— W XMT Legacy Serial Port2 FIFD Froas BINARY

2
FIFC bin read | C]
FIFD Read BINARY 2
= Scope FIFD Read BINARY 2

Copyright 2004-2019 The MathWorks, Inc.

L

See Also

13-73

13 simulink Real-Time Examples

e “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

13-74

Target to Development Computer Communication by Using TCP

Target to Development Computer Communication by Using TCP

I:l_b Erae

oooo
oo

This example shows how to use TCP blocks to send data from the target computer to MATLAB

running on the development computer.

The TCP Send block in the server real-time application slrt _ex target to host TCP sends data
from the target computer to the TCP/IP object that is created in MATLAB on the development
computer. The MATLAB m-script sends the received data back to the real-time application.

To open this example, in the MATLAB Command Window, type:

open system(fullfile(matlabroot, 'toolbox"', 'slrealtime', 'examples', 'slrt ex ta

rget to host TCP'))
Open, Build, and Download Server Application

Open the model.

mdl = 'slrt ex target to host TCP';

mdl0pen = 0;

systems = find system('type’,

if ~any(strcmp(mdl, systems))
mdlOpen = 1;

'block diagram');

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples',mdl));

end

TCP Sarver
Status

Data

Racaive TCP packets using

10.10.10.15:5027 sarverSiatus

TCF Server

Transfer Funciion

numis)

Enable " Sarver: 10.10.10.15:5027

Langth

» Unpack
nea serverRacData

Byte Unpacking

=

sarvarfecLen

TCP Receivel

denis)

Send TCP packets using

servarSendData Pack

. L=

Server: 10.10.10.15:5027

Byte Packing

slrt_ex_targst_to_host TCP

Simulink Real-Time example model

Copyright 2020 The MatrWorks, Inc.

Build Model and Download to Target Computer

set param(mdl, 'RTWVerbose', 'off');
set param(mdl, 'StopTime','10');
targetIP = '10.10.10.35";

set param([mdl,'/TCP Server'], 'serverAddress'

rtwbuild(mdl);
tg = slrealtime;
load(tg,mdl);

Length

Status

]
_

TCP Sendi

,targetIP);

Successful completion of build procedure for: slrt ex target to host TCP

Created MLDATX

..\slrt ex target to host TCP.mldatx

13-75

13 simulink Real-Time Examples

Build Summary
Top model targets built:

Model Action Rebuild Reason

slrt ex target to host TCP Code generated and compiled Global variables have changed.

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 37.964s

Close the model.
if (mdl0pen)

bdclose(mdl);
end

Create TCP/IP Object in MATLAB on Development Computer

Create a TCP/IP object and connect the TCP/IP object to the development computer.
t = tcpip(targetIP,5027);
t.BytesAvailableFcnMode = 'byte';

t.BytesAvailableFcnCount = 16;
fopen(t);

Run Real-Time Application on Target Computer

start(tg);
pause(3);

Read Data Packets and Send Back to Target Computer
Read from the target computer and write back.
while (strcmp(t.Status, 'open'))

data = fread(t,16);

fwrite(t,data);
end
Stop Real-Time Application on Target Computer
stop(tg);
Close TCP/IP Object on Development Computer
fclose(t);
delete(t);
clear t;

View Signal Received on Target Computer

Simulink.sdi.view();

13-76

Target to Development Computer Communication by Using TCP

W serverRecData(1) M serverRecData(2)

31.682 21.54 21.56 21.58 21.60 62 3164 21.66 21.68 21.70 .72 31.74 231.76 31.78 21.80 21.82 21.84 21.86 2182 31.00 21.92 21.04 21.06 21.08

13-77

13 simulink Real-Time Examples

Target to Host Transmission by Using UDP

This example shows how to use UDP blocks to send data from a target computer to a development
computer. The transmit real-time application slrt _ex target to host UDP runs on the target
computer and send signal data to the UDP object that the script creates in MATLAB on the
development computer.

When using the UDP protocol for communicating data to or from the target computer, consider these
issues:

* The Simulink model on the development computer runs as fast as it can. The model run speed is
not synchronized to a real-time clock.

» UDP is a connectionless protocol that does not check to confirm that packets were transmitted.
Data packets can be lost or dropped.

* On the target computer, UDP blocks run in a background task that executes each time step after
the real-time task completes. If the block cannot run or complete the background task before the
next time step, data may not be communicated.

» UDP data packets are transmitted over the Ethernet link between the development and target
computers. These transmissions share bandwidth with the Ethernet link.

For more information about UDP and Simulink Real-Time, see “UDP Communication Setup”.
Open Model, Build, and Load Real-Time Application

This model drives a first order transfer function with a square wave signal and sends the transfer
function input and output signals to the development computer using UDP. To open the model, in the
MATLAB Command Window, type:

open system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex ta
rget to host UDP'));

mdl = 'slrt ex target to host UDP';
md1l0pened = 0;
systems = find system('type', 'block diagram');
if ~any(strcmp(mdl, systems))
md1l0pened = 1;
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples',mdl));
end

13-78

Target to Host Transmission by Using UDP

Transfer Function

goon !
0g | mumis)
" deni(s)
Pack B Data
senverSendData Send UDP packets
» Local: <Target 1P=23000
0 T 10.10.10.1:8002
> ¥ Length

Data > Unpack "
Receive UDP packets »—
—
Local: 10.10.10.15:25000 Bvis Unnackn
From: 10.10.10.1 " Fa .
Length

slri_ex_target_to_host LUDP
Simulink Real-Time example model

Copyright 2020 The MathWorks, Inc.

Build the model and download to the target computer.

* Configure for a non-Verbose build.

» Mark the Byte Unpacking block output for data logging.
* Build and download application.

* Open the Simulation Data Inspector.

This code shows how to mark signals programmatically for data logging. You can also mark signals
for data logging in the Simulink Editor. You can view the logged data in in the Simulation Data
Inspector.

set param(mdl, 'RTWVerbose', 'off');

set param(mdl, 'StopTime', '10');

targetIP = '10.10.10.35";

set param([mdl, '/UDP Receive'], 'ipAddress', targetIP);
hostIP = '10.10.10.128"';

set param([mdl, '/UDP Send'], 'toAddress',hostIP)

set param([mdl, '/UDP Receive'l], 'fmAddress', hostIP)
handle = get _param([mdl,'/Byte Unpacking '], 'PortHandles');
OQutport = handle.Outport(1);
Simulink.sdi.markSignalForStreaming(Outport, 'on');
rtwbuild(mdl);

tg = slrealtime;

load(tg,mdl);

Successful completion of build procedure for: slrt ex target to host UDP
Created MLDATX ..\slrt ex target to host UDP.mldatx

13-79

13 simulink Real-Time Examples

Build Summary
Top model targets built:

Model Action Rebuild Reason

slrt ex target to host UDP Code generated and compiled Global variables have changed.

1 of 1 models built (0 models already up to date)
Build duration: Oh Om 36.128s

Close the model if it is opened.
if (mdlOpened)
bdclose(mdl);
end
Create UDP object in MATLAB on Development Computer

udpObj = udp('"', 'LocalHost',hostIP, 'LocalPort',8002, 'RemoteHost',targetIP, 'RemotePort',b25000);
udpObj.InputBufferSize = 16;
fopen(udpObj);

Run Model on Target Tomputer
start(tg);
Read Data and Write Development Computer
[data,count,errmsg] = fread(udpObj,b16);
while count~=0
fwrite(udpObj,data);
[data,count,errmsg] = fread(udp0Obj,16);
end

View Signals in Simulation Data Inspector

Simulink.sdi.view;

13-80

Target to Host Transmission by Using UDP

W Byte Unpacking :1(1) ® Byte Unpacking :1{2)}
1.1

-0.1

-02

-03

04

05

-08

Disconnect UDP Object on Development Computer

fclose(udpObj);

13-81

13 simulink Real-Time Examples

Apply Simulink Real-Time Model Template to Create Real-Time
Application

13-82

This example shows how to use the Simulink Real-Time template to create a Simulink model. Starting
from the model template provides a new model that has configuration parameters set up for building
a real-time application.

To see the Simulink Real-Time commands for each operation in this example, view the example code.
Create Simulink Model from Template

To create a Simulink model from the Simulink start page, in the MATLAB Command Window, type:
simulink

Select the Simulink Real-Time template from the start page and create the exampleSlrealtimeApp

model. Or, in the Command Window, use the Simulink.createFromTemplate command. See code
for this script for full syntax.

Ay %D—»@

Ot

This model has been sat up with FixedStepDiscrete sohver,
stop time=10s, and sample time = 1ms. Click here to
adjust these options.

Blocks, Connections, and Data Logging in the Model

The Simulink Real-Time model template contains a Gain block that connects a Signal Generator to an
Outport. The Gain block output is marked for logging with the Simulation Data Inspector (SDI).

Simulate Real-Time Application and View Logged Data
Build the real-time application, run it on the target computer, and view the logged data:
1. Make sure that the development computer has a connection to the target computer.

2, Build the model and download the real-time application to the target computer. On the Real-Time
tab, click Run on Target. Or, use the rtwbuild command and the load command.

3. Run the real-time application and log data by using the start command.

4. Open the Simulation Data Inspector by double-clicking the Simulation Data Inspector icon on the
Gain block output signal or by using the Simulink.sdi.view command.

More Information

* “Create and Run Real-Time Application from Simulink Model”
* “Configure and Control Real-Time Application by Using Simulink Real-Time Explorer”
* Simulation Data Inspector

Troubleshooting

83

Troubleshooting Basics

14 Troubleshooting Basics

Troubleshooting Basics

For questions or issues about your installation of the Simulink Real-Time product, refer to these
guidelines and tips.

For more specific troubleshooting solutions, go to the MathWorks® Support website MathWorks Help
Center website.

14-2

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Link Between Development and Target
Computers

* “Troubleshoot Communication Failure Through Firewall” on page 15-2

* “Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional
Signals” on page 15-4

» “Troubleshoot Signal Data Logging from Send and Receive Blocks” on page 15-6

15 Link Between Development and Target Computers

Troubleshoot Communication Failure Through Firewall

15-2

I see communication timeout errors or access errors with my target computer. Some issue with the
Windows Defender Firewall or Symantec Endpoint Protection firewall of the development computer
causes a communications failure with the target computer.

What This Issue Means

This failure occurs when the firewall settings in the firewall software block communications with the
target computer. The firewall configuration must not block the IP addresses that the development and
target computers use to communicate.

Try This Workaround

Configure the firewall settings for the Windows Defender firewall or Symantec Endpoint Protection
firewall.

Configure Windows Defender Firewall

Configure the firewall settings in Windows Defender Security Center to allow communications
between the development and target computers.

1

0 N o u »

10
11

12
13

Confirm that the firewall on the development computer is Windows Defender. In the MATLAB
Command Window type:

[~,antivirus]=system('WMIC /Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusPr1

The antivirus software displays as Windows Defender.

Find Windows Defender Firewall with Advanced Security by using the Windows
search.

To allow MATLAB to communicate with Public networks, in Windows Defender Firewall >
Allowed apps, for MATLAB R2020b, select allow Public network.

Select Inbound Rules and New Rule.

For the Rule Type, select Custom, and click Next.

For the Program, select All programs, and click Next.
For the Protocol and Ports, select Any, and click Next.

For the Scope, add the IP address of the development computer in Which local IP addresses
does this rule apply to? and add the target computer IP address in Which remote IP
addresses does this rule apply to?.

For the Action, select Allow the connection, and click Next.
For the Profile, select the Domain, Private, and Public check boxes, and click Next.

For Name, provide a Name for this inbound rule (for example, Simulink Real-Time
inbound), and click Finish.

Select Outbound Rules and click New Rule.
Repeat steps 4 through 10 for the custom outbound rule.

Troubleshoot Communication Failure Through Firewall

Configure Symantec Endpoint Protection Firewall

If you are using Symantec Endpoint Protection software and get an error message that Simulink Real-
Time failed to connect to the target due to a timeout issue, try this workaround:

1 In the Windows Start menu Search, type firewall and network protection and open the
selection.

Under the Domain network selection, click Open Symantec Endpoint Protection.
Select Settings > Firewall > Program Control.
Add the matlab.exe path to the list and select Allow access.

See Also

More About

. “Enable Development Computer Communication (Windows)”

External Websites
. MathWorks Help Center website

15-3

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

15 Link Between Development and Target Computers

Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-
Point, and Multidimensional Signals

My models sometimes use signals in nonvirtual buses, signals with fixed-point data types, and
mutidimensional signals that have a number of dimensions greater than two. I want to view signal
data from these signals in the Simulation Data Inspector. I do not see data for these signals when I
select them in Simulink Real-Time Explorer for streaming to the Simulation Data Inspector.

What This Issue Means

There are some guidelines to data logging signals in nonvirtual buses, signals with fixed-point data
types, and mutidimensional signals that have a number of dimensions greater than two:

* When these signals are marked for logging with the Simulation Data Inspector, the signal data
displays in the Simulation Data Inspector.

* When these signals are connected to File Log blocks, the signal data displays in the Simulation
Data Inspector.

* When these signals are selected for dynamic streaming with an instrument object—either by
selecting the signals in Simulink Real-Time Explorer or adding the signals by using the
Application object API, the signal data does not display in the Simulation Data Inspector or in
App Designer instrument panel applications.

Try This Workaround

There are workarounds to get signals in nonvirtual buses, signals with fixed-point data types, and
mutidimensional signals (that have a number of dimensions greater than two) to display in the
Simulation Data Inspector.

Signals in Nonvirtual Buses

To get signals in nonvirtual buses to display in the Simulation Data Inspector, mark the signals for
data logging in the model or connect the signals to File Log blocks.

To instrument signals in nonvirtual buses to stream to an Instrument object, use the BusElement
argument in the addSignal, connectLine, or connectScalar methods.

Signals with Fixed-Point Data Types

To get signals with fixed-point data types to display in the Simulation Data Inspector, mark the signals
for data logging in the model or connect the signals to File Log blocks.

Multidimensional Signal
To get signals in mutidimensional signals (that have a number of dimensions greater than two) to

display in the Simulation Data Inspector, mark the signals for data logging in the model or connect
the signals to File Log blocks.

See Also
Bus Creator | addSignal | connectLine | connectScalar | fixdt

15-4

Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional Signals

Related Examples

. “Parameter Tuning and Data Logging” on page 13-2

More About

. “Create Nonvirtual Buses with Bus Creator Blocks”
. “Fixed-Point Data in MATLAB and Simulink”

. “Signal Basics”

. “Variable-Size Signal Basics”

15-5

15 Link Between Development and Target Computers

Troubleshoot Signal Data Logging from Send and Receive
Blocks

15-6

My model uses Send and Receive blocks. I want to view signal data from the message line (output of
send or input of receive) in the Simulation Data Inspector. I see unexpected data when I select a
message line in Simulink Real-Time Explorer for streaming to the Simulation Data Inspector.

What This Issue Means

There are some guidelines to data logging message line signals:
* Message line signals that are marked for logging with the Simulation Data Inspector display the
data accurately in the Simulation Data Inspector.

* Message line signals that are connected to File Log blocks display the data accurately in the
Simulation Data Inspector.

* Message line signals that are selected for dynamic streaming with an instrument object—either by
selecting the signals in Simulink Real-Time Explorer or adding the signals by using the
Application object API—do not display the data accurately in the Simulation Data Inspector or
in App Designer instrument panel applications.

For more information about message lines, see “Animate and Understand Sending and Receiving
Messages”.

Try This Workaround

To get accurate display of message line signals in the Simulation Data Inspector, mark the signals for
data logging in the model or connect the signals to File Log blocks.

See Also
File Log

Related Examples

. “Animate and Understand Sending and Receiving Messages”

More About
. “Data Logging with Simulation Data Inspector (SDI)” on page 6-13

Model Compilation

* “Troubleshoot Model Links to Shared Libraries” on page 16-2
* “Troubleshoot Build Error for Accelerator Mode” on page 16-3

16 Model Compilation

Troubleshoot Model Links to Shared Libraries

16-2

Some model build issues are caused by linking to shared object libraries (. so).

What This Issue Means

When building real-time applications, the Simulink Real-Time software supports links to QNX
Neutrino static link libraries (. a) only, not links to shared object libraries (. s0), unless the shared
object is included in the model through an FMU block. Building a real-time application from a model
with links to one or more SOs produces a build error.

Try This Workaround

When you build your models, make sure that you link to only static link libraries. When you compile
with Simulink Real-Time S-functions, linking to static libraries avoids the dependency issues that
occur in shared object libraries. Each static library must be self contained. The static library must not
be dependent on another external library.

See Also
FMU

More About

. “Build Support for S-Functions”
. “Compile Source Code for Functional Mockup Units” on page 3-3

External Websites
. MathWorks Help Center website

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Build Error for Accelerator Mode

Troubleshoot Build Error for Accelerator Mode

I get a build error when building a model in accelerator mode or rapid accelerator mode when the
model contains Simulink Real-Time blocks (for example, model blocks that represent hardware).

What This Issue Means

Simulink Real-Time does not support accelerator mode or rapid accelerator mode simulation of
models with blocks that represent hardware. For example, if you open the

slrt_ex serialasciitest model, change the Simulink mode to rapid accelerator, and run the
model, Simulink displays this error:

Unable to build a standalone executable to simulate the model
'slrt_ex serialasciitest' in rapid accelerator mode.

This error occurs because accelerator mode and rapid accelerator mode produce compiled code that
runs on the development computer, not on the Simulink Real-Time target computer. Any blocks that

access hardware report a build error if you compile the model by using accelerator mode or rapid
accelerator mode.

Try This Workaround

Change the simulation mode to normal mode or external mode.

See Also

More About

. “How Acceleration Modes Work”
. “Simulink Real-Time Options Pane”

External Websites
. MathWorks Help Center website

16-3

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Real-Time Application Performance

* “Troubleshoot Unsatisfactory Real-Time Performance” on page 17-2
» “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-4
* “Troubleshoot Gaps in Streamed Data” on page 17-6

17 RealTime Application Performance

Troubleshoot Unsatisfactory Real-Time Performance

17-2

I want some recommended methods to improve unsatisfactory real-time application performance.

What This Issue Means

Run-time performance and reduce the task execution time (TET) of a model depend on model design,
target computer capacity, and target computer utilization.

Try This Workaround

You can improve run-time performance and reduce the task execution time (TET) of a model with
these methods.

Run Performance Tools

Use these performance tools:

» To profile execution of a real-time application , use the startProfiler command.
* To run the profiler and plot the results, use the plot function.

For more information, see “Execution Profiling for Real-Time Applications” on page 9-8.
Use a Multicore Target Computer

You can improve run-time performance by configuring your model to take advantage of your
multicore target computer:

1 Partition the model into subsystems according to the physical requirements of the system that
you are modeling. Set the block sample rates within each subsystem to the slowest rate that
meets the physical requirements of the system.

2 In the Configuration Parameters dialog box, on the Solver pane, select the check box for Treat
each discrete rate as a separate task.

3 Click Configure Tasks, and then select the Enable explicit model partitioning for
concurrent behavior check box.

4 Create tasks and triggers, and then explicitly assign subsystem partitions to the tasks. See
“Partition Your Model Using Explicit Partitioning” and “Multicore Programming with Simulink”.

5 Run the real-time application.

Note Do not use MATLAB System blocks in the top level of Simulink Real-Time models in which task
execution is explicitly partitioned. These blocks generate a TLC error when building the real-time
application, for example:

"Unable to find TLCBlockSID within the Block scope"

Minimize the Model

You can improve run-time performance by minimizing your model to make more memory and CPU
cycles available for the real-time application:

Troubleshoot Unsatisfactory Real-Time Performance

1 On the Solver pane, increase Fixed-step size (fundamental sample time). Executing with a
short sample time can overload the CPU.

Use polling mode. See “Execution Modes” on page 7-2.
Reduce the number of I/O channels in the model.

Contact Technical Support
For additional guidance, refer to these sources:

* MathWorks Tech Support: MathWorks Help Center website
« MATLAB Answers: www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
 MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support: www.speedgoat.com/support.

See Also

Related Examples

. “Concurrent Execution on Simulink® Real-Time™"” on page 13-6
More About
. “Execution Profiling for Real-Time Applications” on page 9-8

. “Partition Your Model Using Explicit Partitioning”
. “Execution Modes” on page 7-2

. “Find Simulink Real-Time Support” on page 18-2
. “Multicore Programming with Simulink”

External Websites

. MathWorks Help Center website
. www.speedgoat.com/products

. www.speedgoat.com/support

17-3

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/
https://www.speedgoat.com/support
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.speedgoat.com/products
https://www.speedgoat.com/support

17 RealTime Application Performance

Troubleshoot Overloaded CPU from Executing Real-Time
Application

Some issue is producing a CPU overload when executing a real-time application.

What This Issue Means

A CPU overload indicates that the CPU is unable to complete processing a model time step before
restarting for the next time step.

When this error occurs, the Simulink Real-Time kernel halts model execution and the Target object
property TargetStatus shows an error, for example:

mCPUOverload: Sub-rate exception: Overload limit (0) exceeded in 0.02s rate with 1 overloads

If you allow the overload, model execution continues until the allowed overload limit is reached. If the
model continues to run after a CPU overload, the time step lasts as long as the time required to finish
the execution. This behavior delays the next time step.

Model design or target computer resources cause CPU overloads. Possible reasons are:

* The target computer is too slow or the model sample time is too small.

* The model is too complex (algorithmic complexity).

» /O latency, where each I/O channel used introduces latency into the system. I/O latency can cause
the execution time to exceed the model time step.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

Try This Workaround

The Simulink Real-Time kernel usually halts model execution when it encounters a CPU overload. You
can configure the Simulink Real-Time model to allow CPU overloads. Use this capability to support
long initializations and for overload diagnosis.

Permit Long Initialization Time

For some real-time applications, normal initialization can extend beyond the first sample time. Use
the SLRT Overload Options block to increase the number of startup time steps to ignore overloads. By
default, only the first time step ignores overloads.

Permit CPU Overloads for Diagnosis

During execution, hardware-specific factors can cause the real-time application to process data

beyond the sample time. Use the TLCOptions properties xPCMaxOverloads and
xPCMax0OverloadLen to diagnose and address this issue.

Note Allowing the target computer CPU to overload can cause incorrect results, especially for
multirate models. Use the SLRT Overload Options block only for diagnosis. When your diagnosis is
complete, turn off these options.

17-4

https://www.speedgoat.com/help

Troubleshoot Overloaded CPU from Executing Real-Time Application

See Also

Related Examples
. “Monitor CPU Overload Rate” on page 9-3

More About
. “CPU Overload” on page 9-2

External Websites
. MathWorks Help Center website

17-5

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

17 RealTime Application Performance

Troubleshoot Gaps in Streamed Data

17-6

A real-time application is producing a live streaming overload while attempting to stream signal data
at a high rate.

What This Issue Means

Live streaming from a real-time application does not guarantee all the data appears in the Simulation
Data Inspector. Live stream instrumentation runs at a lower priority than the real-time application.
So, data sent by live streaming could be dropped if the host-target connection cannot keep up.

If a live stream overload occurs, you could see noticeable gaps in the data in the Simulation Data
Inspector or see that some timesteps are lost when you export data from the Simulation Data
Inspector.

Try This Workaround

The issue is caused by high data rates and live streaming of data.
To workaround the issue:

* Modify the real-time application to decrease the data rate for live streaming data. To do this, you
could increase the sample rate, instrument fewer signals, or increase the decimation of
instrumented signals.

* Change the real-time application to use file logging instead of live streaming. File logging is
capable of logging higher data rates without dropping data.

See Also

Related Examples

. “Parameter Tuning and Data Logging” on page 13-2

More About

. “Trace or Log Data with the Simulation Data Inspector” on page 6-22

External Websites
. MathWorks Help Center website

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Simulink Real-Time Support

* “Find Simulink Real-Time Support” on page 18-2
* “Install Simulink Real-Time Software Updates” on page 18-3

18 simulink Real-Time Support

Find Simulink Real-Time Support

For support with Speedgoat target machines or I/O modules, contact Speedgoat support:
www.speedgoat.com/support

For support on general MATLAB or Simulink issues, see MathWorks Support:
www.mathworks.com/support

For support on Simulink Real-Time issues, see:

* Simulink Real-Time Support:

MathWorks Help Center website
* Simulink Real-Time Answers:

www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

www.mathworks.com/matlabcentral/answers/?term=xPC+Target
* Simulink Real-Time Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target
After searching these resources, if you still cannot solve your issue:

» For online or phone support, contact MathWorks technical support directly.

18-2

https://www.speedgoat.com/support
https://www.mathworks.com/support.html
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=xPC+Target
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

Install Simulink Real-Time Software Updates

Install Simulink Real-Time Software Updates

The general procedure for updating Simulink Real-Time is:

1

3

Navigate to the MathWorks download page:

www.mathworks.com/downloads

Navigate to the page for the Simulink Real-Time software version that you want. Download the
software version to your development computer.

Install and integrate the new release software.

After updating Simulink Real-Time, to re-create your Simulink Real-Time target settings:

A W N -

[~) IS |

In the MATLAB Command Window, type slLrtExplorer.
On the Targets Tree pane, select a target computer node.
Click the Target Configuration tab.

Click Change IP Address and select the IP Address and Netmask for communication method
between your development and target computer. For more information, see “Target Computer
Settings”. Click OK.

Click the Disconnected link, toggling it to Connected.
Repeat steps 2 through 5 for each target computer.

Build each model that you want to execute. In the Simulink Editor, on the Real-Time tab, click
Run on Target.

See Also

More About

“Target Computer Settings”

External Websites

www.mathworks.com/downloads
www.speedgoat.com/support

18-3

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads
https://www.speedgoat.com/support

	Introduction
	Simulink Real-Time Product Description
	Speedgoat Target Computers and I/O Hardware

	Model Architectures
	FPGA Models
	Speedgoat FPGA Support with HDL Workflow Advisor
	Speedgoat Simulink-Programmable I/O Module Support
	Prepare for FPGA Workflow

	Interrupt Configuration

	Functional Mockup Units and Simulink Real-Time
	Apply Functional Mockup Units by Using Simulink Real-Time
	Compile Source Code for Functional Mockup Units
	Configure Compiler Environment Variables
	Create the FMU File
	Implement the FMU Block in Model

	Third-Party Calibration Support
	Calibrate Real-Time Application
	Prepare ASAP2 Data Description File
	Initial Setup
	Set Up Parameters
	Set Up Signals
	Set Up Lookup Tables
	Generate Data Description File

	Calibrate Parameters with Vector CANape
	Prepare Project
	Prepare Device
	Configure Signals and Parameters
	Measure Signals and Calibrate Parameters

	Vector CANape Limitations
	Troubleshoot Vector CANape Operation
	What This Issue Means
	Try This Workaround

	Calibrate Parameters with ETAS Inca
	Prepare Database
	Prepare Project
	Prepare Workspace
	Prepare Experiment
	Configure Signals and Parameters
	Measure Signals and Calibrate Parameters

	ETAS Inca Limitations
	Troubleshoot ETAS Inca Operation
	What This Issue Means
	Try This Workaround

	Real-Time Application Setup
	Real-Time Application Environment
	Select Default Target Computer
	Set Up Target Computer Ethernet Connection
	Target Computer Update, Reboot, and Startup Application

	Signals and Parameters
	Signal Monitoring Basics
	Monitor Signals by Using Simulink Real-Time Explorer
	Instrument a Stateflow Subsystem
	Animate Stateflow Charts with Simulink External Mode
	Signal Tracing Basics
	Export and Import Signals in Instrument by Using Simulink Real-Time Explorer
	Trace Signals by Using Simulink External Mode
	Data Logging with Simulation Data Inspector (SDI)
	Parameter Tuning and Data Logging
	Trace or Log Data with the Simulation Data Inspector
	External Mode Usage
	Signal Logging Basics
	Tune Parameters by Using Simulink Real-Time Explorer
	Set Up the Simulation Data Inspector
	View Initial Parameter Values
	Modify Parameter Values

	Tune Parameters by Using MATLAB Language
	Tune Parameters by Using Simulink External Mode
	Tune Parameters by Using Batch Mode and Update All

	Tunable Block Parameters and Tunable Global Parameters
	Tunable Parameters
	Inlined Parameters
	Tune Global Parameters by Using External Mode
	Tune Global Parameters by Using Simulink Real-Time Explorer
	Tune Global Parameters by Using MATLAB Language

	Tune Inlined Parameters by Using Simulink Real-Time Explorer
	Configure Model to Tune Inlined Parameters
	Initial Value
	Updated Value

	Tune Inlined Parameters by Using MATLAB Language
	Tune Parameter Structures by Using Simulink Real-Time Explorer
	Create Parameter Structure
	Replace Block Parameters with Parameter Structure Fields
	Save and Load Parameter Structure
	Tune Parameters in a Parameter Structure

	Tune Parameter Structures by Using MATLAB Language
	Create Parameter Structure
	Save and Load Parameter Structure
	Replace Block Parameters with Parameter Structure Fields
	Tune Parameters in a Parameter Structure

	Define and Update Inport Data
	Required Files
	Map Inport to Use Square Wave
	Update Inport to Use Sawtooth Wave

	Define and Update Inport Data by Using MATLAB Language
	Required Files
	Map Inport to Use Square Wave
	Update Inport to Use Sawtooth Wave

	Inport Data Mapping Limitations
	Display and Filter Hierarchical Signals and Parameters
	Hierarchical Display
	Filtered Display
	Sorted Display

	Troubleshoot Signals Not Accessible by Name
	What This Issue Means
	Try This Workaround

	Troubleshoot Parameters Not Accessible by Name
	What This Issue Means
	Try This Workaround

	Internationalization Issues

	Execution Modes
	Execution Modes

	Real-Time Application Execution
	Working with the Target Computer Command Line
	Control Real-Time Application at Target Computer Command Line
	Execute Target Computer RTOS Commands at Target Computer Command Line

	Tuning Performance
	CPU Overload
	Monitor CPU Overload Rate
	Execution Profiling for Real-Time Applications
	Reduce Build Time for Simulink Real-Time Referenced Models

	Execution with MATLAB Scripts
	Real-Time Application Objects and Options in the MATLAB Interface
	Target and Application Objects
	Control Real-Time Application by Using Objects
	Use Real-Time Application Object Functions

	Simulink Real-Time Instrument Object
	Instrumentation Apps for Real-Time Applications

	Automated Test with Simulink Test
	Test Real-Time Application

	Examples
	Simulink Real-Time Examples
	Parameter Tuning and Data Logging
	Concurrent Execution on Simulink® Real-Time™
	Add App Designer App to Inverted Pendulum Model
	Connect Triggered Subsystem by Using Thread Trigger
	EtherCAT® Communication with Beckhoff® Analog IO Slave Devices EL3062 and EL4002
	EtherCAT® Communication with Beckhoff® Digital IO Slave Devices EL1004 and EL2004
	EtherCAT® Communication - Motor Velocity Control with Accelnet™ Drive
	EtherCAT® Communication - Motor Position Control with an Accelnet™ Drive
	Generate ENI Files for EtherCAT® Devices
	EtherCAT® Communication - Detect EtherCAT network failure and reset
	EtherCAT® Communication - Sequenced Writing Slave SoE Configuration Variables
	EtherCAT® Communication - Sequenced Writing Slave CoE Configuration Variables
	Simple ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)
	ASCII Encoding/Decoding Loopback Test
	ASCII Encoding/Decoding Loopback Test (With Baseboard Blocks)
	ASCII Encoding/Decoding Resync Loopback Test
	ASCII Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)
	Binary Encoding/Decoding Loopback Test
	Binary Encoding/Decoding Loopback Test (With Baseboard Blocks)
	Binary Encoding/Decoding Resync Loopback Test
	Binary Encoding/Decoding Resync Loopback Test (With Baseboard Blocks)
	Target to Development Computer Communication by Using TCP
	Target to Host Transmission by Using UDP
	Apply Simulink Real-Time Model Template to Create Real-Time Application

	Troubleshooting
	Troubleshooting Basics
	Troubleshooting Basics

	Link Between Development and Target Computers
	Troubleshoot Communication Failure Through Firewall
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional Signals
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Send and Receive Blocks
	What This Issue Means
	Try This Workaround

	Model Compilation
	Troubleshoot Model Links to Shared Libraries
	What This Issue Means
	Try This Workaround

	Troubleshoot Build Error for Accelerator Mode
	What This Issue Means
	Try This Workaround

	Real-Time Application Performance
	Troubleshoot Unsatisfactory Real-Time Performance
	What This Issue Means
	Try This Workaround

	Troubleshoot Overloaded CPU from Executing Real-Time Application
	What This Issue Means
	Try This Workaround

	Troubleshoot Gaps in Streamed Data
	What This Issue Means
	Try This Workaround

	Simulink Real-Time Support
	Find Simulink Real-Time Support
	Install Simulink Real-Time Software Updates

